K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

\(A=\frac{2}{2-x}+\frac{1}{x}=\frac{ax}{2-x}+\frac{b\left(2-x\right)}{x}+c\Rightarrow a=1;b=\frac{1}{2};c=\frac{3}{2}\)

\(A=\frac{x}{2-x}+\frac{\left(2-x\right)}{2x}+\frac{3}{2}\ge2\sqrt{\frac{x}{2-x}.\frac{2-x}{2x}}+\frac{3}{2}=\sqrt{2}+\frac{3}{2}\)

\(MinA=\frac{3}{2}+\sqrt{2}\) khi 2x2 = (2-x)2 => x =...

14 tháng 9 2018

\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)

\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)

\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)

dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)

vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)

4 tháng 7 2017

Ta có :

\(y=\frac{2}{1-x}+\frac{1}{x}\)

\(\Rightarrow y=\frac{2\left(1-x\right)+2x}{1-x}+\frac{1-x+x}{x}\)

\(\Rightarrow y=2+\frac{2x}{1-x}+\frac{1-x}{x}+1\)

\(\Rightarrow y=\frac{2x}{1-x}+\frac{1-x}{x}+3\)

Vì \(0< x< 1\Rightarrow\hept{\begin{cases}\frac{2x}{1-x}>0\\\frac{1}{x}>0\end{cases}}\)

Áp dụng BĐT Cô si cho 2 số dương , ta có :

\(\Rightarrow y=\frac{2x}{1-x}+\frac{1-x}{x}+3\ge2\sqrt{\frac{2x}{1-x}.\frac{1-x}{x}}+3=2\sqrt{2}+3\)

Dấu "=" xảy ra khi \(\frac{2x}{1-x}=\frac{1-x}{x}\Leftrightarrow\left(1-x\right)^2=2x^2\Leftrightarrow x^2+2x-1=0\Leftrightarrow\left(x+1\right)^2=2\Rightarrow x=\sqrt{2}-1\) 

                                                                                                                                              (       vì\(0< x< 1\) )

               Vậy \(Min_y=2\sqrt{2}+3\) khi \(x=\sqrt{2}-1\)

                          

4 tháng 7 2017

\(y=\frac{2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)

Dấu = xảy ra khi 

\(\frac{\sqrt{2}}{1-x}=\frac{1}{x}\)

\(\Leftrightarrow x=\frac{1}{1+\sqrt{2}}=\sqrt{2}-1\)

4 tháng 11 2017

A=\(\frac{2}{1-x}+\frac{1}{x} \)

=\(\frac{2}{1-x}-2+\frac{1}{x}-1+3 \)

=\(\frac{2x}{1-x} +\frac{1-x}{x}+3\)

Áp dụng BĐT AM-GM ta có:

A\(\ge\)\(2\sqrt{2}+3\)

Dấu "="xảy ra <=>x=\(\sqrt{2}-1 \)

5 tháng 11 2017

Theo BĐT Cauchy dạng phân thức

\(A=\dfrac{2}{1-x}+\dfrac{1}{x}\ge\dfrac{\left(\sqrt{2}+1\right)^2}{1-x+x}=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\dfrac{\sqrt{2}}{1-x}=\dfrac{1}{x}\Leftrightarrow x=\sqrt{2}-1\)

19 tháng 11 2015

Điểm rơi: \(x=y=\frac{1}{2}.\)

\(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{1}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)

\(=\frac{1}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge2+\frac{6}{1^2}=8\)