Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+4y^2+4xy+10x+12y+18\)
\(A=x^2+4xy+4y^2+6x+12y+9+x^2+4x+4+5\)
\(A=\left(x+2y^2\right)+2.3\left(x+2y\right)+9+\left(x+2\right)^2+5\)
\(A=\left(x+2y+3\right)^2+\left(x+2\right)^2+5\)
Do \(\hept{\begin{cases}\left(x+2y+3\right)^2\ge0\forall x\\\left(x+2\right)^2\ge0\forall x\end{cases}}\)
\(\Leftrightarrow\left(x+2y+3\right)^2+\left(x+2\right)^2+5\ge5\)
" = " \(\Leftrightarrow\hept{\begin{cases}x+2y+3=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=-2\end{cases}}}\)
\(\Rightarrow A_{min}=5\Leftrightarrow\hept{\begin{cases}x=-2\\y=-\frac{1}{2}\end{cases}}\)
Chúc bạn học tốt !!!
\(A=2x^2+4y^2+4xy+10x+12y+18\)
\(A=x^2+4xy+4y^2+6x+12y+9+x^2+4x+4+5\)
\(A=\left(x+2y\right)^2+2.3\left(x+2y\right)+9+\left(x+2\right)^2+5\)
\(A=\left(x+2y+3\right)^2+\left(x+2\right)^2+5\)
Do : \(\left\{{}\begin{matrix}\left(x+2y+3\right)^2\ge0\forall x\\\left(x+2\right)^2\ge0\forall x\end{matrix}\right.\) \(\Leftrightarrow\left(x+2y+3\right)^2+\left(x+2\right)^2+5\ge5\)
\("="\Leftrightarrow\left\{{}\begin{matrix}x+2y+3=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)
\(\Rightarrow A_{Min}=5\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-\dfrac{1}{2}\end{matrix}\right.\)
a: x^2-2x+y^2-8y+17=0
=>x^2-2x+1+y^2-8y+16=0
=>(x-1)^2+(y-4)^2=0
=>x=1 và y=4
b: Sửa đề: 4x^2-4xy+y^2+y^2+4y+4=0
=>(2x-y)^2+(y+2)^2=0
=>y=-2 và x=-1
d) D = x4 - 6x2 + 10
D = (X2)2 - 2. x2. 3 + 32 + 1
D = (x2 - 3)2 + 1
(x2 - 3)2 >= 0 với mọi x
(x2 - 3)2 + 1 >=1 với moi5 x
Vậy GTNN của D là 1
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-3\\z=8\end{cases}}}\)
\(A=2x^2+4y^2+4xy+10x+12y+18\)
\(A=x^2+4xy+4y^2+6x+12y+9+x^2+4x+4+5\)
\(A=\left(x+2y\right)^2+2.3\left(x+2y\right)+9+\left(x+2\right)^2+5\)
\(A=\left(x+2y+3\right)^2+\left(x+2\right)^2+5\)
Do : \(\hept{\begin{cases}\left(x+2y+3\right)^2\ge0\forall x\\\left(x+2\right)^2\ge0\forall x\end{cases}}\)
\(\Leftrightarrow\left(x+2y+3\right)^2+\left(x+2\right)^2+5\ge5\)
\("="\Leftrightarrow\hept{\begin{cases}x+2y+3=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=-2\end{cases}}}\)
Vậy \(A_{min}=5\Leftrightarrow\hept{\begin{cases}x=-2\\y=-\frac{1}{2}\end{cases}}\)
Chúc bạn học tốt !!!