Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x+2xy-4y=14
x+2y.(x-2)=14
(x-2)+2y.(x-2)+2=14
(x-2).(2y+1)=14-2
(x-2).(2y+1)=12
Do 2y+1 là số lẻ nên 2y+1 là Ước lẻ của 12
Các Ước lẻ của 12 là -3;-1;1;3
Bạn làm tiếp nhé
Từ \(x^2+2xy+7\left(x+y\right)+7y^2+10=0\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+6y^2+10=0\) ( * )
\(S=x+y+1\Rightarrow x+y=S-1\)
( * ) \(\left(S-1\right)^2+7.\left(S-1\right)+6y^2+10=0\)
\(\Rightarrow S^2+5S+4=-6y^2\le0\) với mọi y \(\Rightarrow S^2+5S+4\le0\)
=> (S + 4)(S + 1) ≤ 0 => S + 4 và S + 1 trái dấu
Giải 2 trường hợp => -4 ≤ S ≤ -1
=> GTNN của S bằng -4 khi y = 0 và x = -5
GTLN của S bằng -1 khi y = 0 và x = -2
Vì \(\left(3x-33\right)^{2016}\ge0;\left|y-7\right|\ge0\Leftrightarrow\left|y-7\right|^{2017}\ge0\)
=>\(\left(3x-33\right)^{2016}+\left|y-7\right|^{2017}\ge0\)
mà theo đề bài: \(\left(3x-33\right)^{2016}+\left|y-7\right|^{2017}\le0\)
=>\(\left(3x-33\right)^{2016}+\left|y-7\right|^{2017}=0\) <=>\(\left(3x-33\right)^{2016}=0;\left|y-7\right|^{2017}=0\)
- (3x-33)2016=0 <=> 3x-33=0 <=> 3x=33 <=> x=11
- |y-7|2017=0 <=> |y-7|=0 <=> y-7=0 <=> y=7
Vậy x=11 và y=7
Từ \(\frac{x}{2}=\frac{y}{3}\) \(\Rightarrow\) \(\frac{3x}{2.3}=\frac{4y}{3.4}=\frac{3x}{6}=\frac{4y}{12}\) và 3x+4y=36
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{3x}{6}=\frac{4y}{12}=\frac{3x+4y}{6+12}=\frac{36}{18}=2\)
\(\frac{x}{2}=2\Rightarrow x=2.2=4;\frac{y}{3}=2\Rightarrow y=3.2=6\)
Vậy x=4 ; y=6
Ta có : 2xy - 5 = 2x2 + y
\(\implies\) 2xy - 2x2 - y = 5
\(\implies\) ( 2xy - y ) - 2x2 = 5
\(\implies\) y ( 2x - 1 ) - 2x2 = 5
\(\implies\) 2y ( 2x - 1 ) - 4x2 = 10
\(\implies\) 2y ( 2x -1 ) - ( 2x )2 = 10
\(\implies\) 2y ( 2x - 1 ) - ( 2x )2 + 1 = 11
\(\implies\) 2y ( 2x - 1 ) - [ ( 2x )2 - 1 ] = 11
\(\implies\) 2y ( 2x - 1 ) - ( 2x - 1 ) ( 2x + 1 ) =11
\(\implies\) ( 2x - 1 ) [ 2y - ( 2x + 1 ) ] = 11
\(\implies\) 2x - 1 ; 2y - ( 2x + 1 ) \(\in\) Ư ( 11 ) = { 1 ; -1 ; 11 ; -11 }
Ta có bảng sau :
2x - 1 | 1 | -1 | 11 | -11 |
x | 1 | 0 | 6 | -5 |
2y - ( 2x + 1 ) | 11 | -11 | 1 | -1 |
y | 7 | -5 | 7 | -5 |
Vậy ( x ; y ) \(\in\) { (1 ; 7 ), ( 0 ; -5 ) , ( 6 ; 7 ) , (-5 ; -5 ) }
1,\(\frac{xyz+x+z}{yz+1}=\frac{10}{7}\Rightarrow\frac{x\left(yz+1\right)+z}{yz+1}=\frac{10}{7}\)
\(\Leftrightarrow x+\frac{z}{yz+1}=\frac{10}{7}\Leftrightarrow x+\frac{1}{\frac{yz+1}{z}}=\frac{10}{7}\)
\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}=1+\frac{1}{\frac{7}{3}}=1+\frac{1}{2+\frac{1}{3}}\)
Nên x=1,y=2,z=3 bài này thiếu điều kiện x,y,z nhé
2,bài 2 để mai anh xem nha
x2+2xy+4y2+2xy=6xy+12
x(x+2y)+2y(2y+x)=6xy+12
(x+2y)(x+2y)=6(xy+2)
(x+2y)2=6(xy+2)
= x+2y=xy+2 và x+2y=6
x-xy=2-2y 2+2y=6
x(1-y)=2(1-y) 2y=6-2=4
nên x=2 y=4/2=2
Vậy x=2 và y=2
không chắc đâu Kiệt, cậu thử hỏi thầy cô c xem có đúng k, t làm tầm bậy đó,
cái này đc áp dụng hằng đẳng thức hả