K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

Nguyễn Ngọc Sáng theo mình là đề sai nên sửa thành x2

8 tháng 7 2018

a,sửa x8 thành x2

\(A=5-8x-x^2=-\left(x^2+8x+16\right)+21=-\left(x+2\right)^2+21\le21\)

Dấu "=" xảy ra khi x+2=0 <=> x=-2

Vậy Amax = 21 khi x = -2

b,\(B=5-x^2+2x-4y^2-4y=-\left(x^2+2x+1\right)-\left(4y^2+4y+1\right)+7=-\left(x+1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+1=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy Bmax = 7 khi x=-1,y=-1/2

\(A=x^2+2x+3=\left(x+1\right)^2+2>=2\)

Dấu '=' xảy ra khi x=-1

\(B=-\left(x^2+4x-1\right)\)

\(=-\left(x^2+4x+4-5\right)\)

\(=-\left(x+2\right)^2+5< =5\)

Dấu '=' xảy ra khi x=-2

\(C=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21< =21\)

Dấu '=' xảy ra khi x=-4

\(D=-\left(x^2+x-1\right)\)

\(=-\left(x^2+x+\dfrac{1}{4}-\dfrac{5}{4}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}< =\dfrac{5}{4}\)

Dấu '=' xảy ra khi x=-1/2

7 tháng 8 2018

a) x2−2x−4y2−4y=(x2−4y2)−(2x+4y)=(x−2y).(x+2y)−2.(x+2y)

=(x+2y).(x−2y−2)

b)  x4+2x3−4x−4=(x4−4)+(2x3−4x)=(x2+2).(x2−2)+2x.(x2−2)

=(x2−2).(x2+2+2x)

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu 

3 tháng 8 2019

1) \(x^3-x^2=4x^2-8x+4\)

\(\Leftrightarrow x^3-x^2-4x^2+8x-4=0\)

\(\Leftrightarrow x^2-5x^2+8x-4=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-2x.2+2^2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

26 tháng 6 2019

\(A=-x^2+2xy-4y^2+2x+10y-8\)

\(=-x^2+2xy-y^2-3y^2+2x-2y+12y-12+4\)

\(=-\left(x^2-2xy+y^2\right)+\left(2x-2y\right)-1-\left(3y^2-12y+12\right)+5\)

\(=-\left(x-y\right)^2+2\left(x-y\right)-1-3\left(y-2\right)^2+5\)

\(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]\)\(-3\left(y-2\right)^2+5\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\)

\(A_{max}=5\Leftrightarrow\hept{\begin{cases}\left(x-y-1\right)^2=0\\3\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x-y-1=0\\y=2\end{cases}}\)\(\Rightarrow x-2-1=0\Leftrightarrow x=3\)

\(KL:A_{max}=5\Leftrightarrow x=3;y=2\)

23 tháng 11 2017

\(Câu\text{ }1:\\ A=-2x^2-y^2-2xy+4x+2y+5\\ =-x^2-x^2-y^2-2xy+2x+2x+2y-1-1+7\\ =-\left(x^2+2xy+y^2\right)+\left(2x+2y\right)-1-\left(x^2-2x+1\right)+7\\ =-\left(x+y\right)^2+2\left(x+y\right)-1-\left(x-1\right)^2+7\\ =-\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]-\left(x-1\right)^2+7\\ =-\left(x+y-1\right)^2-\left(x-1\right)^2+7\\ =-\left[\left(x+y-1\right)^2+\left(x-1\right)^2\right]+7\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \left(x+y-1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-1\right)^2+\left(x+y-1\right)^2\ge0\forall x;y\\ \Rightarrow-\left[\left(x-1\right)^2+\left(x+y-1\right)^2\right]\le0\forall x;y\\ \Rightarrow A=-\left[\left(x-1\right)^2+\left(x+y-1\right)^2\right]+7\le7\forall x;y\\ Dấu\text{ }"="\text{ }xảy\text{ }khi:\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(x+y-1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y+1-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\\ Vậy\text{ }A_{\left(Max\right)}=7\text{ }khi\text{ }\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(Câu\text{ }2:\\ B=2x^2+4y^2+4xy+2x+4y+9\\ =x^2+x^2+4y^2+4xy+2x+4y+1+8\\ =\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+x^2+1+8\\ =\left(x+2y\right)^2+2\left(x+2y\right)+1+x^2+8\\=\left[\left(x+2y\right)^2+2\left(x+2y\right)+1\right]+x^2+8\\ =\left(x+2y+1\right)^2+x^2+8\\ Do\text{ }x^2\ge0\forall x\\ \left(x+2y+1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x+2y+1\right)^2+x^2\ge0\forall x;y\\ \Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\forall x;y\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\left\{{}\begin{matrix}x^2=0\\\left(x+2y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\x+2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right.\\ Vậy\text{ }B_{\left(Min\right)}=8\text{ }khi\text{ }\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right. \)

\(\)

Chữa đề: \(A=-2x^2-y^2-2xy+4x+2y+5\)

8 tháng 10 2020

A = -x2 + 2xy - 4y2 + 2x + 10y - 8

=> -A = x2 - 2xy + 4y2 - 2x - 10y + 8

          = ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 3y2 - 12y + 12 ) - 5

          = [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 3( y2 - 4y + 4 ) - 5

          = [ ( x - y )2 - 2( x - y ) + 1 ] + 3( y - 2 )2 - 5

          = ( x - y - 1 )2 + 3( y - 2 )2 - 5 ≥ -5 ∀ x, y

Dấu "=" xảy ra <=> x = 3 ; y = 2

=> -A ≥ -5

=> A ≤ 5

=> MaxA = 5 <=> x = 3 ; y = 2

B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

= ( x2 - 6xy + 9y2 + 4x - 12y + 4 ) + ( x2 - 10x + 25 ) + 1975

= [ ( x2 - 6xy + 9y2 ) + ( 4x - 12y ) + 4 ] + ( x - 5 )2 + 1975

= [ ( x - 3y )2 + 2( x - 3y ).2 + 22 ] + ( x - 5 )2 + 1975

= ( x - 3y + 2 )2 + ( x - 5 )2 + 1975 ≥ 1975 ∀ x, y

Dấu "=" xảy ra <=> x = 5 ; y = 7/3

=> MinB = 1975 <=> x = 5 ; y = 7/3

8 tháng 10 2020

Ta có: A = -x2 + 2xy - 4y2 + 2x + 10y - 8

A = -[x2 - 2xy + 4y2 - 2x - 10y + 8]

A = -[(x2 - 2xy + y2) - 2(x + y) + 1 + 3y2 - 12y + 12 - 5]

A = -[(x - y)2 - 2(x + y) + 1 + 3(y - 2)2]+ 5

A = -[(x - y - 1)2 + 3(y - 2)2] + 5 \(\le\) 5 với mọi x

Dấu "=" xảy ra <=> x - y - 1 = 0 và y + 2 = 0

=>x = -1 và y = -2

Vậy MaxA = 5 khi x = -1 và y = -2

B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

B = (x2 - 6xy + 9y2) + 4(x - 3y) + 4 + x2 - 10x + 25 + 1975

B = (x - 3y + 2)2 + (x - 5)2 + 1975 \(\ge\)1975

đoạn cuối tt trên