Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐXĐK: ...
\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)
\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)
\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))
\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)
d/
\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)
Đặt \(\sqrt{x^2+x+1}=a\)
\(\Leftrightarrow3x^2-5ax+2a^2=0\)
\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)
Mình tách thành hai phần nhìn cho dễ hiểu nhé !
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
+) \(\frac{x-3\sqrt{x}}{x-9}-1=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}-1=\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{-3}{\sqrt{x}+3}\)
+) \(\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{9-x+x-9-x+4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
=> \(\frac{-3}{\sqrt{x}+3}\div\frac{4-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{-3}{\sqrt{x}+3}\times\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{4-x}\)
\(=\frac{3\left(\sqrt{x}-2\right)}{x-4}=\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3}{\sqrt{x}+2}\)
Bài 1:
Ta có:
\(A=(x^2-x)(x^2+3x+2)=x(x-1)(x+1)(x+2)\)
\(=[x(x+1)][(x-1)(x+2)]=(x^2+x)(x^2+x-2)\)
\(=(x^2+x)^2-2(x^2+x)=(x^2+x)^2-2(x^2+x)+1-1\)
\(=(x^2+x-1)^2-1\geq -1\)
Vậy GTNN của $A$ là $-1$. Dấu "=" xảy ra khi \((x^2+x-1)^2=0\Leftrightarrow x^2+x-1=0\Leftrightarrow x=\frac{-1\pm \sqrt{5}}{2}\)
------------------------
\(B=x^4+(x-2)^4+6x^2(x-2)^2=x^4+(x-2)^4-2x^2(x-2)^2+8x^2(x-2)^2\)
\(=[x^2-(x-2)^2]^2+8x^2(x-2)^2\)
\(=16(x-1)^2+8[x(x-2)]^2=16(x^2-2x+1)+8(x^2-2x)^2\)
\(=8[(x^2-2x)^2+2(x^2-2x+1)]=8[(x^2-2x)^2+2(x^2-2x)+1+1]\)
\(=8[(x^2-2x+1)^2+1]=8(x^2-2x+1)^2+8\geq 8\)
Vậy GTNN của biểu thức là $8$ khi \((x^2-2x+1)^2=0\Leftrightarrow (x-1)^4=0\Leftrightarrow x=1\)
-------------------
\(C=4x^2+4x-6|2x+1|+6=(4x^2+4x+1)-6|2x+1|+5\)
\(=|2x+1|^2-6|2x+1|+5\)
\(=|2x+1|^2-6|2x+1|+9-4=(|2x+1|-3)^2-4\geq -4\)
Vậy GTNN của biểu thức là $-4$ khi \(|2x+1|=3\Leftrightarrow x=1\) hoặc $x=-2$
Bài 2:
ĐKXĐ: \(x\geq 0\)
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(x+1\geq 2\sqrt{x}\Rightarrow x+1+\sqrt{x}\geq 3\sqrt{x}\)
\(\Rightarrow E=\frac{\sqrt{x}}{x+1+\sqrt{x}}\leq \frac{\sqrt{x}}{3\sqrt{x}}=\frac{1}{3}\)
Vậy GTLN của $E$ là $\frac{1}{3}$ khi $x=1$
a) \(\left|3x+1\right|=\left|x+1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=x+1\\3x+1=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c) \(\sqrt{9x^2-12x+4}=\sqrt{x^2}\)
\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=\sqrt{x^2}\)
\(\Leftrightarrow\left|3x-2\right|=\left|x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=x\\3x-2=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
d) \(\sqrt{x^2+4x+4}=\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=\sqrt{\left(2x-3\right)^2}\)
\(\Leftrightarrow\left|x+2\right|=\left|2x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-3\\x+2=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)
e) \(\left|x^2-1\right|+\left|x+1\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
f) \(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)
\(\Leftrightarrow\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)
\(\Leftrightarrow\left|x-4\right|+\left|x+2\right|=0\)
⇒ vô nghiệm
ĐKXĐ: \(-\frac{1}{3}\le x\le9\)
\(E=-x^2+4\sqrt{\left(9-x\right)\left(1+3x\right)}\le-x^2+2\left(10+2x\right)\)
\(\Rightarrow E\le-x^2+4x+20=24-\left(x-2\right)^2\le24\)
\(\Rightarrow E_{max}=24\) khi \(x=2\)
Cho mik hỏi dòng
E=\(-x^2+4\sqrt{\left(9-x\right)\left(1+3x\right)}\)\(\le\) \(-x^2+2\left(10+2x\right)\)
Làm sao để chuyển ra như thế vậy ???