K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

\(a,A=x^2+2x-3=\left(x^2+2x+1\right)-4=\left(x+1\right)^2-4\ge-4\)

Dấu = xảy ra \(\Leftrightarrow x=-1\)

Vậy \(Min_A=-4\Leftrightarrow x=-1\)

\(b,B=2x^2-x+1=-\left(x^2-2x+1\right)+2=-\left(x-1\right)^2+2\le2\)

Dấu = xảy ra \(\Leftrightarrow x=1\)

Vậy \(Max_B=2\Leftrightarrow x=1\)

\(c,C=-3x^2+3x+1=-3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{7}{4}=-3\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\le\dfrac{7}{4}\)

Dấu = xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(Max_C=\dfrac{7}{4}\Leftrightarrow x=\dfrac{1}{2}\)

\(d,D=-4x^2+2x+3=-4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)+\dfrac{13}{4}=-4\left(x-\dfrac{1}{4}\right)^2+\dfrac{13}{4}\le\dfrac{13}{4}\)

\(Max_D=\dfrac{13}{4}\Leftrightarrow x=\dfrac{1}{4}\)

16 tháng 9 2018

-Tìm GTNN :

a) A= (x2 + 2.x.1 + 12) - 4 = (x + 1)2 - 4

Do (x+1)2 ≥ 0 ⇒ (x+1)2 - 4 ≥ (-4)

⇒ A đạt GTNN ⇔ (x+1)2 = 0 ⇒ x+1= 0 ⇒ x= -1

Vậy A đạt GTNN là -4 ⇔ x= -1

28 tháng 6 2017

a\(A=x^2-3x+5\)

\(\Leftrightarrow A=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}+5-\dfrac{9}{4}\)

\(\Leftrightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Min \(A=\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{2}\)

28 tháng 6 2017

c) \(C=4-x^2+2x\)

\(\Leftrightarrow C=-\left(x^2-2x+4\right)+8\)

\(\Leftrightarrow C=-\left(x-2\right)^2+8\le8\)

Max \(C=8\Leftrightarrow x=2\)

Mấy câu kia tương tự ,bạn làm nhé

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

19 tháng 7 2016

AI BIET THI GIUP MK VS NHA

19 tháng 7 2016

a)  \(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)

       \(=\left(x^2+3x+1-3x+1\right)^2\)

        \(=\left(x^2+2\right)^2\)

b)  \(=\left[\left(3x^3+1\right)^2-\left(3x\right)^2\right]-\left(3x^2+1\right)^2\)

      \(=-\left(3x\right)^2=9x^2\)

c)\(=\left[\left(2x^2+1\right)^2-\left(2x\right)^2\right]-\left(2x^2+1\right)^2\)

    \(=-\left(2x\right)^2=4x^2\)

     

Bài 2. Thực hiện phép nhân: a. 3x(4x - 3) - (2x -1)(6x + 5) b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1) c. (x - 2)(1x + 2)(x + 4) Bài 3. Chứng ming rằng: a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2 c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3 e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4 Bài 4. Tìm x biết: a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12 c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 ...
Đọc tiếp

Bài 2. Thực hiện phép nhân:

a. 3x(4x - 3) - (2x -1)(6x + 5)

b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1)

c. (x - 2)(1x + 2)(x + 4)

Bài 3. Chứng ming rằng:

a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2

c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3

e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4

Bài 4. Tìm x biết:

a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12

c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 d. 4x(x -1) - 3(x2 - 5) - x2 = (x - 3) - (x + 4)

e. 2(3x -1)(2x + 5) - 6(2x -1)(x + 2) = -6

Bài 5. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x:

a. A = 2x(x -1) - x(2x + 1) - (3 - 3x) b. B = 2x(x - 3) - (2x - 2)(x - 2)

c. C = (3x - 5)(2x +11) - (2x + 3)(3x + 7) d. D = (2x +11)(3x - 5) - (2x + 3)(3x + 7)

Bài 6. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào y:

P = (2x - y)(4x2 + 2xy + y2 ) + y3

các bạn ơi giúp mình nha

3
8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum

6 tháng 6 2019

Theo mình nghĩ thì phải là giá trị lớn nhất

A=-(x^2-4x+5)

A=-[(x-2)^2+1]

Mà (x-2)^2+1>=1

Nên A<=-1

B=-(x^2+6x-1)

B=-[(x+3)^2-10]

nên B<=10

C=-(x^2+3x+2)

C=-(x^2+3x+9/4-1/4)

C=-[(x+3/2)^2-1/4]

Nên C<=1/4

D=-(2x^2-3x+1)

D=-2(x^2-3x/2+1/2)

D=-2(x^2-3x/2+9/16-1/16)

D=-2[(x-3/2)^2-1/16]

Nên D<=1/8

Chúc bạn học tốt!

êu cô ra sai đề phải GTLN mới làm đc

19 tháng 7 2017

Ta có : x2 + 4x 

= x2 + 4x + 4 - 4

= (x + 2)2 - 4 

Mà ; (x + 2)\(\ge0\forall x\)

Nên : (x + 2)2 - 4 \(\ge-4\forall x\)

Vậy GTNN của biểu thức là -4 khi x = -2

19 tháng 7 2017

Ta có : 4x2 - 4x - 1

= (2x)2 - 4x + 1 - 1

= (2x - 1)2 - 1

Mà : (2x - 1)2 \(\ge0\forall x\)

Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)

Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)

19 tháng 7 2017

giúp mấy câu tiếp theo với

27 tháng 6 2018

a) x2 - 2x + 5

= x2 - x - x + 1 + 4

= (x2 - x) - (x - 1) + 4

= x.(x-1) - (x-1) + 4

= (x-1)^2 + 4

Có: (x-1)^2 \(\ge\)0 => (x-1)^2 + 4\(\ge4\)

Dấu ''='' xảy ra khi x-1=0 => x = 1.

Vậy Min của x^2 - 2x + 5 bằng 4 khi x = 1