Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2/x^2-5x+7 >= 0
Dấu "=" xảy ra <=> x = 0
Vậy GTNN của biểu thức trên = 0 <=> x = 0
a) \(A=\left(x^2-10x+25\right)\)\(-28\)
\(A=\left(x-5\right)^2-28\)\(>=\)-28
MinA = -28 <=> x-5=0 <=> x=5
b)\(B=-\left(x^2+2x+1\right)+6\)
\(B=-\left(x+1\right)^2+6\)\(< =\)6
MaxB = 6 <=> x+1=0 <=> x=-1
c)\(C=-5\left(x^2-\frac{6}{5}x+\frac{9}{25}\right)-\frac{26}{5}\)
\(C=-5\left(x-\frac{3}{5}\right)^2-\frac{26}{5}\)\(< =-\frac{26}{5}\)
MaxC = \(-\frac{26}{5}\)<=> \(x-\frac{3}{5}=0\)<=> x=\(\frac{3}{5}\)
d)\(D=-3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)+\frac{61}{12}\)
\(D=-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\)\(< =\frac{61}{12}\)
MacD = \(\frac{61}{12}\)<=> \(x+\frac{1}{6}=0\)<=> \(x=\frac{-1}{6}\)
Đúng thì nhớ tích cho minh nha
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)
mình sẽ cho bạn 1 công thức lớp 9, nhớ nhé, nó sẽ giải được hầu hết các bài tìm min max mà có phân số như kiểu bài này
đối với phương trình bậc 2 ẩn x ví dụ như ax^2+bx+c=0 với a,b,c là tham số
ta luôn có \(\Delta\)(đọc là đenta, phiên âm của delta, viết giống tam giác) =b^2-4ac
để phương trình có nghiệm thì \(\Delta\ge0\)thì phương trình mới có nghiệm
đó là công thức, giải bài trên thì bạn làm bước sau ra nháp:
\(yx^2-5yx+7y=x^2\Rightarrow x^2\left(y-1\right)-5yx+7y=0\)
phương trình trên là phương trình bậc 2 ẩn x, y là tham số, theo công thức trên thì a là y-1, b là -5y, c là 7y
vậy để phương trình luôn có nghiệm thì \(\Delta=b^2-4ac=25y^2-4.7y\left(y-1\right)\ge0\)
Giải cái bất phương trình đó ra bạn sẽ có \(-3y^2+28y\ge0\Rightarrow y\left(3y-28\right)\le0\)
giải ra sẽ có \(0\le y\le\frac{28}{3}\)
thế là đã tìm ra min và max của y
Trình bày vào vở như sau:
Đầu tiên tự chứng minh mẫu dương nhé, mình lười ^^
sau đó viết :
\(y=\frac{x^2}{x^2-5x+7}\ge0\)
dấu = xảy ra khi x=0
ta có: \(y=\frac{x^2}{x^2-5x+7}=\frac{28}{3}+\left(\frac{x^2}{x^2-5x+7}-\frac{28}{3}\right)\)
\(=...=\frac{28}{3}-\frac{25x^2-140x+196}{3\left(x^2-5x+7\right)}=\frac{28}{3}-\frac{\left(5x-14\right)^2}{...}\le\frac{28}{3}\)
(mấy cái bước quy đồng tự làm hộ mình cái, mình lười ^^)
rồi đó, vậy tìm được min và max của y, khi bạn tìm được min max y ra nháp rồi thì cứ lấy biểu thức ban đầu cộng thêm với cái số đó rồi trừ đi nó, cuối cùng kiểu gì cũng ra 1 cái bình phương, với điều kiện là bài này phải có mẫu dương nhé
mệt quá ai có lòng từ bi phát
-Min : quá dễ,đánh giá mẫu dương, tử ko âm từ đó min=0 ,đẳng thức xảy ra <=> x=0
-Max : A đạt max <=> 1/A đạt min
biến đổi về 1/A=7(1/x-5/14)2+3/28 >/ 3/28 => min của 1/A = 3/28 => maxA=28/3
đẳng thức xảy ra <=> x=14/5
a ) \(A=x^2-4x-7\)
\(A=\left(x^2+2.x.2+2^2\right)-11\)
\(A=\left(x+2\right)^2-11\)
Ta có : \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2-11\ge-11\)
Vậy GTNN của \(A=-11\)
Khi : \(x+2=0\)
\(x=-2\)
b ) \(B=-x^2+4x-7\)
\(B=-\left(x^2+2.x.2-2^2\right)-3\)
\(B=-\left(x-2\right)^2-3\)
Ta có : \(-\left(x-2\right)^2\le0\)
\(\Rightarrow-\left(x-2\right)^2-3\le-3\)
Vậy GTLN của \(B=-3\)
Khi \(x-2=0\)
\(x=2\)
a)
\(A=\left(x^2-4x+4\right)-11\)
\(=\left(x-2\right)^2-11\)
Ta có
\(\left(x-2\right)^2-11\ge-11\)
Dấu " = " xảy ra khi x = 2
Vậy MINA= - 11 khi x=2
b)
\(B=-\left(x^2-4x+4\right)-3\)
\(B=-\left(x-2\right)^2-3\)
Ta có
\(-\left(x-2\right)^2-3\le-3\) với mọi x
Dấu " = " xảy ra khi = 2
Vậy MAXB= - 3 khi x = 2
... 1 slot.... biếng làm quá -.-. Tự nghĩ cách biến đổi nha, chừng nào thua thì ib :v
a) \(C=\dfrac{x^2-3x+1}{x^2+x+1}=5-\dfrac{4\left(x+1\right)^2}{x^2+x+1}\le5\)
\(C=\dfrac{x^2-3x+1}{x^2+x+1}=\dfrac{\dfrac{4}{3}\left(x-1\right)^2}{x^2+x+1}-\dfrac{1}{3}\ge\dfrac{-1}{3}\)
b) ......Tự làm, c) Tự làm
Ý kiến, ném đá gì thì ib
\(A=\frac{x^2}{x^2-5x+7}\Leftrightarrow Ax^2-5Ax+7A-x^2=0\)
\(\Leftrightarrow x^2\left(A-1\right)+5Ax+7A=0\)
\(\Delta=25A^2-28A\left(A-1\right)\ge0\)
\(\Leftrightarrow-3A^2+28A\ge0\Leftrightarrow3A\left(A-\frac{28}{3}\right)\le0\Leftrightarrow0\le A\le\frac{28}{3}\)