K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

a) Theo đề ra, ta có: \(x^2=yx^2-5xy+7y\)

\(\Leftrightarrow x^2-yx^2+5xy-7y=0\)

\(\Leftrightarrow\left(1-y\right)x^2+5yx-7y=0\)

Ta có: \(\Delta=25y^2+4.7y.\left(1-y\right)\)

\(\Leftrightarrow\Delta=25y^2+28y-28y^2=-3y^2+28y\) (1)

Phương trình (1) ẩn x phải có nghiệm

+) Khi y = 0 \(\Leftrightarrow x=0\)

+) \(y\ne0\) , thì (1) là phương trình bậc 2 . Phương trình (1) có nghiệm khi: \(\Delta=-3y^2+28y\ge0\)

Tắt: Dùng máy tính giải ra được \(0\le y\le\dfrac{28}{3}\)

+) \(y=0\Leftrightarrow x^2=0\Leftrightarrow x=0\)

+) \(y=\dfrac{28}{3}\Leftrightarrow x=x^2\left(1-\dfrac{28}{3}\right)+5\cdot\dfrac{28}{3}\cdot x-7\cdot\dfrac{28}{3}=0\)

\(\Leftrightarrow x=\dfrac{14}{5}\)

Vậy Min y = 0 khi x = 0; Max y = \(\dfrac{28}{3}\) khi x = \(\dfrac{14}{5}\)

10 tháng 5 2017

b) Hoàng Tuấn Đăng không tìm được để mình tìm cho

lớp 8 mới sợ lớp 9 lại không kinh dạng này

\(y=\dfrac{6-4x}{x^2+1}\)

\(yx^2+4x+y-6=0\) (1)

điều kiện y để (1) luôn có nghiệm

với y =0 ta có x=3/2 thỏa mãn

với y khác 0 để (1) có nghiệm

cần \(\Delta_{\left(x\right)}\ge0\Leftrightarrow2-y\left(y-6\right)=2+6y-y^2\ge0\)

\(\Leftrightarrow y^2-6y-2\le0\)(2)

\(\Delta_y=9+2=11\)

\(\Rightarrow N_0..\Delta_y\Leftrightarrow\left\{{}\begin{matrix}y_1=3-\sqrt{11}\\y_2=3+\sqrt{11}\end{matrix}\right.\)

Nghiệm BPT (2) \(\Leftrightarrow3-\sqrt{11}\le y\le3+\sqrt{11}\)

Kết luận

GTLN của Y là\(3+\sqrt{11}\)

GTNN của Y là \(3-\sqrt{11}\)

Đạt tại đâu thay y vào giải (1) => x

23 tháng 5 2023

Biểu thức nào em?

24 tháng 5 2023

cả hai ạ

30 tháng 12 2021

\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)

\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu \("="\Leftrightarrow x=y=z=1\)

30 tháng 12 2021

Em cảm ơn anh ạ! 

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duong-cmr-dfraca2bcdfracb2cadfracc2abgedfracabc2.4139278814936

20 tháng 5 2021

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\) 

\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)

Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)

\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)

minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\)  \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)

maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)

 

13 tháng 10 2021

sai chiều bđt r

 

9 tháng 2 2023

Ta có : \(P\text{=}\dfrac{5x-9}{x-3}\text{=}\dfrac{5x-15+6}{x-3}\)

\(\Rightarrow P\text{=}\dfrac{5x-15}{x-3}+\dfrac{6}{x-3}\)

\(\Rightarrow P\text{=}\dfrac{5\left(x-3\right)}{x-3}+\dfrac{6}{x-3}\text{=}\dfrac{6}{x-3}+5\)

\(\Rightarrow P_{max}\Leftrightarrow x-3\text{=}1\Leftrightarrow x\text{=}4\)

\(\Rightarrow P_{max}\text{=}9\Leftrightarrow x\text{=}4\)

\(\Rightarrow P_{min}\Leftrightarrow x-3\text{=}-1\Leftrightarrow x\text{=}2\)

\(\Rightarrow P_{min}\text{=}-1\Leftrightarrow x\text{=}2\)

7 tháng 12 2021

\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)

8 tháng 12 2021

\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế

 

NV
1 tháng 3 2023

Ta có: \(2x^3+2y^3-\left(x+y\right)\left(x^2+y^2\right)=\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow\dfrac{x^3+y^3}{x^2+y^2}\ge\dfrac{x+y}{2}\)

Tương tự: \(\dfrac{y^3+z^3}{y^2+z^2}\ge\dfrac{y+z}{2}\) ; \(\dfrac{z^3+x^3}{z^2+x^2}\ge\dfrac{z+x}{2}\)

Cộng vế: \(P\ge x+y+z\ge6\)

\(P_{min}=6\) khi \(x=y=z=2\)