Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow Qx^2+Q=10x^2+8x+4\)
\(\Leftrightarrow x^2\left(Q-10\right)-8x+Q-4=0\)(1)
*Neu Q = 10 thi x = ... (ban tu tinh nha)
*Neu Q # 10 thi pt (1) co nghiem khi va chi khi Delta' >
Ta co \(\Delta'\ge0\)
\(\Leftrightarrow16-\left(Q-10\right)\left(Q-4\right)\ge0\)
\(\Leftrightarrow16-Q^2+14Q-40\ge0\)
\(\Leftrightarrow-Q^2+14Q-24\ge0\)
\(\Leftrightarrow2\le Q\le12\)
Ban tu tim dau "=" nha
Giải PT: \(x^2+3y^2+2xy-8x-16y+23=0\)
\(\Leftrightarrow x^2+y^2+16+2xy-8x-8y+2y^2-8y+7=0\)
\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y^2-4y+4\right)-1=0\)
\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y-2\right)^2-1=0\)
\(\Rightarrow\left(x+y-4\right)^2=-2\left(y-2\right)^2+1\le1\)
Dấu "=" xảy ra khi : \(-2\left(y-2\right)^2=0\Rightarrow y=2\)
\(\Rightarrow\)\(\text{│}x+y-4\text{│}\le1\)
\(\Rightarrow-1\le x+y-4\le1\)
\(\Rightarrow3\le x+y\le5\)
Vậy Bmin=3 khi y=2;x=1
Bmax=5 khi y=2;x=3
Bạn ơi đề là M = \(\dfrac{x^2+x+1}{x^2+4}\) hay M = \(\dfrac{x^2+x+1}{x^2}+4\) vậy bn?
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Vậy minN = -1 khi x = -4
Vậy maxN = 4 khi x = 1
Vậy maxN = 4 khi x=1