Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 -4x+5+y^2+2y
=(x^2-4x+4)+(y^2+2y +1)
=(x-2)^2+(y+1)^2
vì (x-2 )^2 >= 0
(y+1)^2>=0
=)) (x-2)^2 +(y+1)^2 >=0
dấu "=" xảy ra
<=>x-2 =0 =)x=2
và y+1=0 =)y=-1
vậy..........
M = 4x2 + 4x + 5
M = (4x2 + 4x + 1) + 4
M = (2x + 1)2 + 4
Vì (2x + 1)2 ≥ 0
=> (2x + 1)2 + 4 ≥ 4 <=> M ≥ 4
=> GTNN của M bằng 4
Dấu "=" xảy ra khi\(\left(2x+1\right)^2=0\Leftrightarrow x=\frac{-1}{2}\)
Vậy GTNN của M bằng 4
\(N=5x^2+4y^2+4xy+4x\)
\(N=\left(x^2+4xy+4y^2\right)+\left(4x^2+4x+1\right)-1\)
\(N=\left(x+2y\right)^2+\left(2x+1\right)^2-1\)
Mà \(\left(x+2y\right)^2\ge0\forall x;y\)
\(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow N\ge-1\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x+2y=0\\2x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=-\frac{1}{2}\end{cases}}\)
Vậy ...
Ta có: A = 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MinA = 3 <=> x = -1
\(2x^2+4x+5\)
\(=2\left(x^2+2x+\frac{5}{2}\right)\)
\(=2\left(x^2+2x+1+\frac{3}{2}\right)\)
\(=2\left[\left(x+1\right)^2+\frac{3}{2}\right]\)
\(=2\left(x+1\right)^2+3\ge3\)
Dấu '' = '' xảy ra khi
\(\Leftrightarrow2\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy............................
P/s : sai thì thôi nha
\(M=4x^2+4xy+2y\left(y-2\right)=4x^2+4xy+2y^2-4y.\)
\(=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-4\)
\(=\left(2x+y\right)^2+\left(y-2\right)^2-4\ge-4\)
MinM=-4
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x-y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
a.
\(A=\frac{x^2+x^2-2x+1}{x^2}=1+\frac{\left(x-1\right)^2}{x^2}\ge1\)
Giá trị nhỏ nhất của A là 1 khi và chỉ khi x-1=0 <=> x=1
b. \(B=\frac{2014x^2+4x^2-4x+1}{x^2}=2014+\frac{\left(2x-1\right)^2}{x^2}\ge2014\)
Giá trị nhỏ nhất của B là 2014 khi và chỉ khi 2x-1=0 <=> x=1/2
\(D=\frac{x^2+2}{x^2+1}=\frac{x^2+1+1}{x^2+1}=\frac{x^2+1}{x^2+1}+\frac{1}{x^2+1}=1+\frac{1}{x^2+1}\)
D đạt giá trị lớn nhất
<=> \(\frac{1}{x^2+1}\) đạt giá trị lớn nhất
<=> x2 + 1 đạt giá trị nhỏ nhất
x2 lớn hơn hoặc bằng 0
x2 + 1 lớn hơn hoặc bằng 1
\(\frac{1}{x^2+1}\le1\)
\(1+\frac{1}{x^2+1}\le2\)
Vậy Max D = 2 khi x = 0
Có : \(D=-x^2-4x\)
\(D=-x^2-4x-4+4\)
\(D=-\left(x+2\right)^2+4\le4\)
=> \(Max_D=4\)
<=> x = -2
\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)
\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)
Min A=-2/3 khi x=2
\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)
\(\Rightarrow C\le2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)
Vậy Min C = 2 kjhi x = -2