Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tại sao học 24 ngu thế , bài sai rồi mà vẵn chọn ak , giáo viên trang này bị khùng điên cả ak , hay là mắt đui ko biết nhìn mà bấm ngu thế
\(\left(x-4\right)^2+\left(x-5\right)^2\)
\(=x^2-8x+16+x^2-10x+25=2x^2-18x+41\)
\(=2\left(x^2-9x+\frac{41}{2}\right)=2\left[x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\)
Vì \(\left(x-\frac{9}{2}\right)^2\ge0\)
nên \(2\left(x-\frac{9}{2}\right)\ge0\)
do đó \(2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Vậy \(Min_{\left(x-4\right)^2+\left(x-5\right)^2}=\frac{1}{2}\)khi \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
\(I=\left(x-2\right)^2+\left(x-5\right)^2\)
Ta có :
\(\left(x-2\right)^2\ge0\forall\) và \(\left(x-5\right)^2\ge0\forall x\)
=> \(I\ge0\)
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}\)
=> không có giá trị nào để I đạt giá trị nhỏ nhất .
\(I=\left(x-2\right)^2+\left(x-5\right)^2\)
Đặt \(x-2=t\)
\(\Rightarrow I=t^2+\left(t-3\right)^2\)
\(I=t^2+t^2-6t+9\)
\(I=2t^2-6t+9\)
\(I=2.\left(t^2-2.t.1,5+2,25\right)+4,5\)
\(I=2.\left(t-1,5\right)^2+4,5\)
Ta có: \(2.\left(t-1,5\right)^2\ge0\forall t\)
\(\Rightarrow2.\left(t-1,5\right)^2+4,5\ge4,5\forall t\)
\(I=4,5\Leftrightarrow2.\left(t-1,5\right)^2=0\Leftrightarrow t-1,5=0\Leftrightarrow t=1,5\)
\(\Rightarrow x-2=1,5\)
\(\Rightarrow x=3,5\)
Vậy \(I_{min}=4,5\Leftrightarrow x=3,5\)
Tham khảo nhé~
A = x2 + 3x + 7
= x2 + 2 . x . 3/2 + 9/4 + 19/4
= (x + 3/2)2 + 19/4
(x + 3/2)2 lớn hơn hoặc bằng 0
(x + 3/2)2 + 19/4 lớn hơn hoặc bằng 19/4
Vậy Min A = 19/4 khi x = - /32
***
B = x(x - 6)
= x2 - 6x
= x2 - 2 . x . 3 + 9 - 9
= (x - 3)2 - 9
(x - 3)2 lớn hơn hoặc bằng 0
(x - 3)2 - 9 lớn hơn hoặc bằng - 9
Vậy Min B = - 9 khi x = 3
***
C = (x - 2)(x - 5)(x 2 - 7x - 10)
= (x2 - 7x + 10)(x2 - 7x - 10)
= (x2 - 7x)2 - 100
(x2 - 7x)2 lớn hơn hoặc bằng 0
(x2 - 7x)2 - 100 lớn hơn hoặc bằng - 100
Vậy Min C = - 100 khi x = 7
A = 11 - 10x - x2
= - (x2 + 2 . x . 5 + 25 - 36)
= -[(x + 5)2 - 36]
(x + 5)2 lớn hơn hoặc bằng 0
(x + 5)2 - 36 lớn hơn hoặc bằng - 36
- [(x + 5)2 - 36] nhỏ hơn hoặc bằng 36
Vậy Max A = 36 khi x= - 5
B = |x - 4|(2 - |x - 4|)
Đặt |x - 4| = t, ta có:
B = t(2 - t)
= - (t2 - 2 . t . 1 + 1 - 1)
= - [(t - 1)2 - 1]
= - [(|x - 4| - 1)2 - 1]
(|x - 4| - 1)2 lớn hơn hoặc bằng 0
(|x - 4| - 1)2 - 1 lớn hơn hoặc bằng - 1
- [(|x - 4| - 1)2 - 1] nhỏ hơn hoặc bằng 1
Vậy Max B = 1 khi x = 5 hoặc x = 3
\(D=\dfrac{x^2}{x-2}\left(\dfrac{x^2+4-4x}{x}\right)+3\)
\(D=\dfrac{x^2}{x-2}\dfrac{\left(x-2\right)^2}{x}+3\)
\(D=x\left(x-2\right)+3\)
\(D=x^2-2x+1+2\)
\(D=\left(x-1\right)^2+2\ge2\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy MinD là 2 \(\Leftrightarrow x=1\)
a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)
Đặt \(k=x^2-x+2\) thì biểu thức có dạng
k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)
c)làm tương tự câu a
Đặt \(|x-4|=t\)
Khi đó: \(C=t\left(2-t\right)\)
\(=2t-t^2\)
\(=-t^2+2t-1+1\)
\(=-\left(t^2-2t+1\right)+1\)
\(=-\left(t-1\right)^2+1\le1\forall t\)
Dấu "=" xảy ra khi:
\(t-1=0\Rightarrow t=1\Rightarrow|x-4|=1\Rightarrow\orbr{\begin{cases}x-4=1\\x-4=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
Vậy GTLN của C là 1 khi \(\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
Chúc bạn học tốt.