Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm lại câu b) nha
b) |x-3|=-4
th1: x-3=-4
x=3+(-4)
x=-1
th2: x-3=4
x=3+4
x=7
b) \(\left|x-3\right|=-4\)
t/h1:\(x-3=-4\)
\(x=3-\left(-4\right)\)
\(x=7\)
t/h2:\(x-3=4\)
\(x=3-4\)
\(x=-1\)
|2x-1|=1,5
TH(1)2x-1=1,5
2x =1,5+1
2x =2,5
x =2,5 :2
x =1,25
TH(2) 2x-1=-1,5
2x =-1,5+1
2x =-0,5
x =-0,5:2
x =-0,25
các câu khác cứ tương tự bạn nhé
b) \(7,5-\left|5-2x\right|=-4,5\)
\(\left|5-2x\right|=7,5+4,7\)
\(\left|5-2x\right|=12\)
th1 :\(5-2x=12\)
\(2x=5-12\)
\(2x=-7\)
\(x=-7:2\)
\(x=-3,5\)
th2: \(5-2x=-12\)
\(2x=5+12\)
\(2x=17\)
\(x=17:2\)
\(x=8,5\)
c) \(-3+\left|x\right|=-1\)
\(\left|x\right|=-1+3\)
\(\left|x\right|=2\)
th1: \(x=-2\)
th2 : \(x=2\)
d)\(\left|2\dfrac{1}{3}-x\right|=\dfrac{1}{6}\)
\(\left|\dfrac{7}{3}-x\right|=\dfrac{1}{6}\)
th1 :\(\dfrac{7}{3}-x=\dfrac{1}{6}\)
\(x=\dfrac{7}{3}-\dfrac{1}{2}\)
\(x=\dfrac{11}{6}\)
th2: \(\dfrac{7}{3}-x=\dfrac{-1}{6}\)
\(x=\dfrac{7}{3}+\dfrac{1}{6}\)
\(x=\dfrac{-5}{2}\)
e) \(\dfrac{5}{7}-\left|x+1\right|=\dfrac{1}{14}\)
\(\left|x+1\right|=\dfrac{5}{7}-\dfrac{1}{14}\)
\(\left|x+1\right|=\dfrac{9}{14}\)
th1 :\(x+1=\dfrac{9}{14}\)
\(x=\dfrac{9}{14}-1\)
\(x=\dfrac{-5}{14}\)
th2 : \(x+1=\dfrac{-9}{14}\)
\(x=\dfrac{-9}{14}-1\)
\(x=\dfrac{-5}{14}\)
a: =>|x-1/4|=3/4
=>x-1/4=3/4 hoặc x-1/4=-3/4
=>x=1 hoặc x=-1/2
b: \(\left|x+\dfrac{1}{2}\right|=\dfrac{1}{2}-\dfrac{9}{4}=\dfrac{2-9}{4}=-\dfrac{7}{4}\)(vô lý)
c: \(\Leftrightarrow\left[{}\begin{matrix}2x+5=1-x\\2x+5=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\x=-6\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{4}{3};-6\right\}\)
e: =>|3/2-x|=0
=>3/2-x=0
hay x=3/2
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
Bài 1:
a) \(x^2-3=1\)
\(\Rightarrow x^2=1+3=4\)
\(\Rightarrow x=\pm2\)
b)\(2x^3+12=-4\)
\(\Rightarrow2x^3=-4-12=-16\)
\(\Rightarrow x^3=-8\)
\(\Rightarrow x=-2\)
c)\(\left(2x-3\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=\dfrac{7}{2}\\-\dfrac{1}{2}\end{matrix}\right.\)
a) \(x^2-3=1\Rightarrow x^2=4\Rightarrow x=\pm2\)
b) \(2x^3+12=-4\Rightarrow2x^3=-16\)
\(\Rightarrow x^3=-\dfrac{16}{2}=-8=-2^3\)
\(\Rightarrow x=-2\)
c) \(\left(2x-3\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d,h,i,k cững tương tự....
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
Giải:
a) \(2x^2yz\left(-3xy^3z\right)=-6x^3y^4z^2\)
Bậc của đơn thức: \(3+4+2=9\)
b) \(\left(-12xyz\right)\left(\dfrac{-4}{3}x^2yz^3\right)y=16x^3y^3z^4\)
Bậc của đơn thức: \(3+3+4=10\)
c) \(-2x^2y\left(-3xy^2\right)^3=-2x^2y\left(-27x^3y^6\right)=54x^5y^7\)
Bậc của đơn thức: \(5+7=12\)
d) \(12\dfrac{1}{2}x^4\left(-\dfrac{2}{5}x^3y\right)^2=6x^4\left(\dfrac{4}{25}x^6y^2\right)=\dfrac{24}{25}x^{10}y^2\)
Bậc của đơn thức: \(10+2=12\)
\(a,2x^2yz\left(-3xy^3z\right)=-6x^3y^4z^2\)
Bậc của đơn thức là 9
\(b,\left(-12xyz\right)\left(-\dfrac{4}{3}x^2yz^3\right)y=16x^3y^3z^4\)
Bậc của đơn thức: 10
\(c,-2x^2y\left(-3xy^2\right)^3\)
\(-2x^2y.\left(-27\right)x^3y^6=54x^5y^7\)
Bậc của đơn thức: 12
\(d,12\dfrac{1}{2}x^4\left(-\dfrac{2}{5}x^3y\right)^2\)
\(=12\dfrac{1}{2}x^4\cdot\dfrac{4}{25}x^6y^2=2x^{10}y^2\)
Bậc của đơn thức : 12
\(a,\frac{15^3.\left(-5\right)^4}{\left(-3\right)^5.5^6}\)\(=\frac{3^3.5^3}{\left(-3\right)^5.5^2}\)\(=-\frac{5}{\left(3\right)^2}=-\frac{5}{9}\)
\(b,\frac{6^3.2.\left(-3\right)^2}{\left(-2\right)^9.3^7}\)\(=-\frac{6^3}{2^8.3^5}\)\(=-\frac{2^3.3^3}{2^8.3^5}\)\(=-\frac{1}{2^5.3^2}=-\frac{1}{288}\)
\(c,\frac{3^6.7^2-3^7.7}{3^7.21}\)\(=\frac{3^6.7\left(7-3\right)}{3^7.21}\)\(=\frac{3^6.7.4}{3^7.7.3}\)\(=\frac{4}{3.3}=\frac{4}{9}\)
\(a,\left(x-1,2\right)^2=4\)
\(\Rightarrow x-1,2=2\)
\(\Rightarrow x=3,2\)
\(b,\left(x+1\right)^3=-125\)
\(\Rightarrow\left(x+1\right)^3=\left(-5\right)^3\)
\(\Rightarrow x+1=-5\Rightarrow x=-6\)
\(c,\left(x-5\right)^3=2^6\)
\(\Rightarrow\left(x-5\right)^3=4^3\)
\(\Rightarrow x-5=4\Rightarrow x=9\)
\(d,\left(2x+1\right)^{x+1}=5^{x+1}\)
\(\Rightarrow2x+1=5\Rightarrow x=2\)
C=|2x-3/5|+4/3>=4/3
Dấu = xảy ra khi x=3/10
D=|x-3|+|-x-2|>=|x-3-x-2|=5
Dấu = xảy ra khi -2<=x<=3