K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

a/ \(A=x^2+y^2-2x+6y+12\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\)

Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)

\(\Leftrightarrow A\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

Vậy....

b/ \(B=-4x^2-9y^2-4x+6y+3\)

\(=-\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)+1\)

\(=-\left(2x+1\right)^2-\left(3y+1\right)^2+1\)

Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(2x+1\right)^2\ge0\\\left(3y+1\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\left(2x+1\right)^2\le0\\-\left(3y+1\right)^2\le0\end{matrix}\right.\)

\(\Leftrightarrow-\left(2x+1\right)^2-\left(3y+1\right)^2\le0\)

\(\Leftrightarrow B\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{1}{3}\end{matrix}\right.\)

3 tháng 10 2019

đề bài là j vậy bn?

3 tháng 10 2019

phân tích đa thức sau thành nhân tử

13 tháng 8 2018

\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)

Vậy GTNN của A là -22 khi x = 5

\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = -3

\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)

Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)

\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)

Vậy GTNN của D là 16 khi x = 2; y = 0

\(E=x^2+2y^2-2xy+4x-6y+100\)

\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)

\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)

Vậy GTNN của E là 95 khi x = -1 ; y = 1

\(F=2x^2+y^2-2xy+4x+100\)

\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)

\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)

Vậy GTNN của F là 96 khi x = -2; y = -2

13 tháng 8 2018

\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)

Vậy GTLN của A là 39 khi x = -6

\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)

Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)

15 tháng 12 2015

C =- (4x2+4x+1) - (9y2 -6y +1) +3 = - (2x+1)2 - ( 3y -1)2 + 3 </ 3

C max = 3 khi x =-1/2 và y =1/3

 

D - dể  suy nghĩ đã nhé

15 tháng 12 2015

ai ủng hộ vài li-ke tròn 210 lun , please

29 tháng 6 2021

\(a)\)

\(A=2x^2+x\)

\(\Leftrightarrow A=2\left(x+\frac{1}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)

\(MinA=\frac{-1}{8}\)khi \(x=\frac{-1}{4}\)

\(b)\)

\(B=x^2+2x+y^2-4y+6\)

\(\Leftrightarrow B=x^2+2x+1+y^2-4y+4+1\)

\(\Leftrightarrow B=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\)

Dấu '' = '' xảy ra khi: \(x=-1;y=2\)

\(c)\)

\(C=4x^2+4x+9y^2-6y-5\)

\(\Leftrightarrow C=4x^2+4x+1+9y^2-6y+1-7\)

\(\Leftrightarrow C=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)

Dấu '' = '' xáy ra khi: \(x=\frac{-1}{2};y=\frac{1}{3}\)

\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-6

\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)

Dấu '=' xảy ra khi x=2/3

\(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

7 tháng 12 2015

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự

21 tháng 6 2017

\(A=x^2-8x+13=\left(x^2-8x+16\right)-3\ge-3\)Vậy \(Min_A=-3\) khi \(x+4=0\Leftrightarrow x=-4\)

\(B=2x^2+10x+5=2\left(x^2+5x+\dfrac{25}{4}\right)-\dfrac{5}{4}=2\left(x+\dfrac{5}{2}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)Vậy \(Min_B=-\dfrac{5}{4}\) khi \(x+\dfrac{5}{2}=0\Rightarrow=\dfrac{-5}{2}\)

\(C=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\le4\)Vậy \(Max_C=4\) khi \(2-x=0\Rightarrow x=2\)

21 tháng 6 2017

Bài 1:

a, \(A=x^2-8x+13\)

\(A=x^2-4x-4x+16-3\)

\(A=\left(x-4\right)^2-3\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2-3\ge-3\)

Hay \(A\ge-3\) với mọi giá trị của \(x\in R\).

Để \(A=-3\) thì \(\left(x-4\right)^2-3=-3\Rightarrow x=4\)

Vậy......

Câu b tương tự

c, \(4x-x^2\)

\(C=-\left(x^2-4x\right)=-\left(x^2-2x-2x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-4\ge-4\)

\(\Rightarrow-\left[\left(x-2\right)^2-4\right]\le4\)

Hay \(A\le4\) với mọi giá trị của \(x\in R\).

Để \(A=4\) thì \(-\left[\left(x-2\right)^2-4\right]=4\Rightarrow x=2\)

Vậy......

Chúc bạn học tốt!!!

30 tháng 9 2018

a)  \(A=4x^2-12x+2010\)

\(=4x^2-12x+9+2001\)

\(=\left(2x-3\right)^2+2001\ge2001\)

Dấu "=" xảy ra khi:  \(x=\frac{3}{2}\)

Vậy....

21 tháng 7 2017

\(D=\left(x^2+y^2+1^2+2\left(x-y-xy\right)\right)+\left(y^2-4y+4\right)+\left(2020-1-16\right)\)\(D=\left(x-y+1\right)^2+\left(y-2\right)^2+2015\ge2015\)

21 tháng 7 2017

chưa xong vậy