Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)
b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)
Ta có : /2x-1/ >=0
Gtnn cuả /2x-1/ = 0 đạt tại x = 1/2
===> Gtnn của C là 0 + 2.1/2 + 6 = 7
a) \(A=\left(2x-3\right)^2-\frac{1}{2}\)
Vì: \(\left(2x-3\right)^2\ge0\)
=> \(\left(2x-3\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Vậy GTNN của A là \(-\frac{1}{2}\) khi \(x=\frac{3}{2}\)
b) \(B=\frac{1}{2}-\left|2-3x\right|\)
Vì: \(\left|2-3x\right|\ge0\)
=> \(-\left|2-3x\right|\le0\)
=> \(\frac{1}{2}-\left|2-3x\right|\le\frac{1}{2}\)
Vậy GTLN của B là \(\frac{1}{2}\)
a: (2x-3)^2>=0
=>-(2x-3)^2<=0
=>D<=-3
Dấu = xảy ra khi x=3/2
b: (2x-5)^2>=0
(y+1/2)^2>=0
=>(2x-5)^2+(y+1/2)^2>=0
=>D>=2022
Dấu = xảy ra khi x=5/2 và y=-1/2