Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
\(A=\left(x+2020\right)^4+\left|y-2019\right|-2018\)
+Có: \(\left(x+2020\right)^4\ge0với\forall x\\\left|y-2019\right|\ge0với\forall y\\\Rightarrow \left(x+2020\right)^4+\left|y-2019\right|-2018\ge-2018\\ \Leftrightarrow A\ge-2018 \)
+Dấu "=" xảy ra khi
\(\left(x+2020\right)^4=0\\ \Leftrightarrow x=-2020\)
\(\left|y-2019\right|=0\\ \Leftrightarrow y=2019\)
+Vậy \(A_{min}=-2018\) khi \(x=-2020,y=2019\)
F = | 2x - 2 | + | 2x - 2003 |
F = | 2x - 2 | + | -( 2x - 2003 ) |
F = | 2x - 2 | + | 2003 - 2x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001
Đẳng thức xảy ra khi ab ≥ 0
=> ( 2x - 2 )( 2003 - 2x ) ≥ 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)
2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )
Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)
G = | 2x - 3 | + 1/2| 4x - 1 |
G = | 2x - 3 | + | 2x - 1/2 |
G = | -( 2x - 3 ) | + | 2x - 1/2 |
G = | 3 - 2x | + | 2x - 1/2 |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2
Đẳng thức xảy ra khi ab ≥ 0
=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0
Xét 2 trường hợp :
1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )
=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)
H = | x - 2018 | + | x - 2019 | + | x - 2020 |
H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]
H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]
H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]
Ta có : | x - 2019 | ≥ 0 ∀ x
| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )
=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2
Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)
=> x = 2019
=> MinH = 2 <=> x = 2019
1. A=\(\frac{x^2-1}{x^2+1}\)
=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)
để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN
mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0.
khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0
Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)
\(=\left|x+2017\right|+\left|2-x\right|\)
\(\ge\left|x+2017+2-x\right|\)
\(=2019\)
Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)
\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)
Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)
$H=|x-2018|+|x-2019|+|x-2020|$
$=|x-2018|+|x-2020|+|x-2019|=|x-2018|+|2020-x|+|x-2019|$
Ta có:
$|x-2018|+|2020-x|\geq |x-2018+2020-x|=2$
$|x-2019|\geq 0$ với mọi $x$
$\Rightarrow H\geq 2$
Vậy $H_{\min}=2$. Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-2018)(2020-x)\geq 0\\ x-2019=0\end{matrix}\right.\Leftrightarrow x=2019\)
Lời giải:
Bạn áp dụng BĐT sau:
$|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$
Ta có:
\(F=|2x-2|+|2x-2003|=|2x-2|+|2003-2x|\geq |2x-2+2003-2x|=2001\)
Vậy $F_{\min}=2001$. Dấu "=" xảy ra khi $(2x-2)(2003-2x)\geq 0$
$\Leftrightarrow 1\leq x\leq \frac{2003}{2}$
---------------
\(G=|2x-3|+\frac{1}{2}|4x-1|=|2x-3|+|2x-\frac{1}{2}|=|3-2x|+|2x-\frac{1}{2}|\geq |3-2x+2x-\frac{1}{2}|\)
\(=\frac{5}{2}\)
Vậy $G_{\min}=\frac{5}{2}$. Dấu "=" xảy ra khi $(3-2x)(2x-\frac{1}{2})\geq 0$
$\Leftrightarrow \frac{1}{4}\leq x\leq \frac{3}{2}$
\(K=|x-1|+|x-2|+|x-3|\)
\(=\left(|x-1|+|x-3|\right)+|x-2|\)
\(=\left(|x-1|+|3-x|\right)+|x-2|\)
Đặt \(A=|x-1|+|3-x|\ge|x-1+3-x|\)
Hay \(A\ge2\left(1\right)\)
Dấu "= " xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\3-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>3\end{cases}\left(loai\right)}\)
\(\Leftrightarrow1\le x\le3\)
Đặt \(B=|x-2|\)
Ta có: \(|x-2|\ge0;\forall x\)
Hay \(B\ge0;\forall x\left(2\right)\)
Dấu "=" xảy ra \(\Leftrightarrow|x-2|=0\)
\(\Leftrightarrow x=2\)
Từ \(\left(1\right);\left(2\right)\Rightarrow A+B\ge2+0\)
Hay \(K\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow}x=2\)
Vậy MIN K=2 \(\Leftrightarrow x=2\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)
Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)
nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)
thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)
\(\Rightarrow x-1=0\text{ và }y+3=0\)
\(\Rightarrow x=1\text{ và }y=-3\)
\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)
Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)
hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)
\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)
\(\Rightarrow x^2=9\text{ và }6y=2\)
\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)
Câu c) làm tương tự nha
a, Ta có : y^2 lớn hơn hoặc bằng 0 với mọi y
=> -y^2 nhỏ hơn hoặc bằng 0 với mọi y
=>-2-y^2 nhỏ hơn hoặc bằng -2 với mọi y
=> H nhỏ hơn hoặc -2 với mọi y
Dấu "=" xảy ra <=>y^2=0 <=>y=0
Vậy GTLN của H là -2 tại y=0