Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1.
a. \(=\left(x+y\right)\left(x-5\right)\)
b. \(=\left(x+2y\right)^2\)
c. \(=\left(x-1\right)\left(x-6\right)\)
câu 3.
a. \(A=5\left(x+1\right)^2+2010\ge2010\forall x\)
Vậy \(minA=2010\Leftrightarrow x=-1\)
b. \(\Leftrightarrow\left(y+1\right)\left(x-1\right)=11\)
Vì x, y nguyên nên có các TH :
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y+1=1\\x-1=11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=11\\x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-1\\x-1=-11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-11\\x-1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=12\end{matrix}\right.\\\left\{{}\begin{matrix}y=10\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=-10\end{matrix}\right.\\\left\{{}\begin{matrix}y=-12\\x=0\end{matrix}\right.\end{matrix}\right.\)
câu 6.
a. giống câu 3
b. \(B=-2\left(x-1\right)^2+7\le7\forall x\in R\)
Bài 1:
a) \(5x-15y=5\left(x-3y\right)\)
b) \(\dfrac{3}{5}x^2+5x^4-x^2y=x^2\left(\dfrac{3}{5}+5x^2-y\right)\)
c) \(14x^2y^2-21xy^2+28x^2y=7xy\left(2xy-3y+4x\right)\)
d) \(\dfrac{2}{7}x\left(3y-1\right)-\dfrac{2}{7}y\left(3y-1\right)=\dfrac{2}{7}\left(3y-1\right)\left(x-y\right)\)
e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
f) \(\left(x+y\right)^2-4x^2=\left(-x+y\right)\left(3x+y\right)\)
g) \(27x^3+\dfrac{1}{8}=\left(3x+\dfrac{1}{2}\right)\left(6x^2+1,5x+\dfrac{1}{4}\right)\)
h) \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3=2y\left(3x^2+y\right)\)
Bài 2:
a) \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\Rightarrow x=-1\\x+2=0\Rightarrow x=-2\end{matrix}\right.\)
b) \(x\left(3x-2\right)-5\left(2-3x\right)=0\)
\(\Rightarrow x\left(3x-2\right)+5\left(3x-2\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\Rightarrow x=\dfrac{2}{3}\\x+5=0\Rightarrow x=-5\end{matrix}\right.\)
c) \(\dfrac{4}{9}-25x^2=0\)
\(\Rightarrow\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-5x=0\Rightarrow x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0\Rightarrow x=\dfrac{-2}{15}\end{matrix}\right.\)
d) Có tới 2 dấu "=".
bài 1 dễ mk ko lm nữa nhé
bafi2:
a,x(x+1)(x+2)=0
x=0 ; x=-1 ; x=-2
b,x(3x-2)+5(3x-2)=0
(x+5)(3x-2)=0
x=-5 ; x=2/3
c,
(2/3)2- (5x)2=0
(2/3-5x)(2/3+5x)=0
x=+-2/15
d, X2-2*1/2x+(1/2)2=0
(X-1/2)22=0
X=1/2
\(\frac{3}{2}\left(x^2+y^2\right)=1+\frac{1}{2}\left(x+y\right)^2\ge1\Rightarrow x^2+y^2\ge\frac{2}{3}\)
\(P\ge x^4+y^4-\frac{x^4+y^4}{2}=\frac{x^4+y^4}{2}\ge\frac{\left(\frac{x^2+y^2}{2}\right)^2}{2}=\frac{1}{18}\)
\(P_{min}=\frac{1}{18}\) khi \(\left(x;y\right)=\left(\frac{\sqrt{3}}{3};-\frac{\sqrt{3}}{3}\right)\) và hoán vị
Bình phương 2 vế giả thiết:
\(x^4+y^4+2x^2y^2=x^2y^2+2xy+1\)
\(\Rightarrow x^4+y^4=-x^2y^2+2xy+1\)
\(\Rightarrow P=-2x^2y^2+2xy+1=-\frac{1}{2}\left(2xy-1\right)^2+\frac{3}{2}\le\frac{3}{2}\)
\(P_{max}=\frac{3}{2}\) khi \(\left\{{}\begin{matrix}xy=\frac{1}{2}\\x^2+y^2=\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=...\\y=...\end{matrix}\right.\)
1)Thấy: x=0;y=0 không phải là nghiệm của hệ.
\(\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x^3-8x=y^3+2y\\x^2=3\left(y^2+2\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x^3-8x=y\left(y^2+2\right)\\x^2y=3y\left(y^2+2\right)\end{cases}\)
Trừ vế theo vế hai phương trình,đc:
\(x^3-8x-\frac{x^2y}{3}=0\Leftrightarrow y=\frac{3\left(x^3-8x\right)}{x^2}\)
\(\Leftrightarrow y=\frac{3\left(x^2-8\right)}{x}\).Thay \(y=\frac{3\left(x^2-8\right)}{x}\) vào pt 2 đc:
\(26x^4-426x^2-1728=0\)
\(\Leftrightarrow\begin{cases}x^2=9\\x^2=\frac{96}{13}\end{cases}\) dễ nhé
a/ Đặt \(\left|x\right|=t\ge0\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)
\(\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\)
b/ \(\Leftrightarrow\left(x+1\right)^2+\left|x+1\right|-6=0\)
Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+t-6=0\Rightarrow\left[{}\begin{matrix}t=-3\left(l\right)\\t=2\end{matrix}\right.\)
\(\Rightarrow\left|x+1\right|=2\Rightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
c/ \(\Leftrightarrow\left(x+1\right)^2-5\left|x+1\right|+4=0\)
Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2-5t+4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|x+1\right|=1\\\left|x+1\right|=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=4\\x+1=-4\end{matrix}\right.\)
d. \(\Leftrightarrow\left(x-1\right)^2+5\left|x-1\right|+4=0\)
Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=-4\left(l\right)\end{matrix}\right.\)
Vậy pt vô nghiệm
e. \(\Leftrightarrow\left(x-2\right)^2+2\left|x-2\right|-3=0\)
Đặt \(\left|x-2\right|=t\ge0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)
f. \(\Leftrightarrow\left(2x-5\right)^2+4\left|2x-5\right|-12=0\)
Đặt \(\left|2x-5\right|=t\ge0\)
\(\Rightarrow t^2+4t-12=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-6\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left|2x-5\right|=2\Rightarrow\left[{}\begin{matrix}2x-5=2\\2x-5=-2\end{matrix}\right.\)
Tìm x biết:
b/\(\left(2x+3\right)^2-\left(5x-4\right)\left(5x+4\right)=\left(x+5\right)^2-\left(3x-1\right)\left(7x+2\right)-\left(x^2-x+1\right)\)
<=> \(4x^2 +12x+9-25x^2+16-x^2-10x-25+21x^2+6x-7x-2+x^2-x+1=0\)
<=>0x-1=0
<=>0x=1 (vô lí) (dòng này không cần ghi thêm cũng được)
=> Không có giá trị x nào thỏa mãn
c/ \((1-3x)^2-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)^2\)
<=>\(1-6x+9x^2-9x^2-x+18x+2-9x^2+16+9x^2+54x+81=0\)
<=> 65x+100=0
<=> x=\(\dfrac{-20}{13}\)
d/\((3x+4)(3x-4)-(2x+5)^2=(x-5)^2+(2x+1)^2-(x^2-2x)+(x-1)^2\)
<=> \(9x^2-16-4x^2-20x-25-x^2+10x-25-4x^2-4x-1+x^2+2x-x^2+2x-1=0\)
<=> -10x-68=0
<=> x=\(\dfrac{-34}{5}\)