Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=3x^2+\frac{8}{x}=3x^2+\frac{4}{x}+\frac{4}{x}\ge3\sqrt[3]{3x^2.\frac{4}{x}.\frac{4}{x}}=6\sqrt[3]{6}\)
Dấu \(=\)khi \(3x^2=\frac{4}{x}\Leftrightarrow x=\sqrt[3]{\frac{4}{3}}\).
Đặt \(\sqrt{x^2+4x+5}=t\Rightarrow t\in\left[\sqrt{2};\sqrt{26}\right]\)
\(f\left(t\right)=-t^2+5+2t+7=-t^2+2t+12\)
\(-\frac{b}{2a}=1\notin\left[\sqrt{2};\sqrt{26}\right]\)
\(f\left(\sqrt{2}\right)=10+2\sqrt{2}\) ; \(f\left(\sqrt{26}\right)=-14+2\sqrt{26}\)
\(\Rightarrow f_{max}=10+2\sqrt{2}\) ; \(f_{min}=-14+2\sqrt{26}\)
a.
\(y=x^2\left(4-2x\right)=x.x.\left(4-2x\right)\le\left(\dfrac{x+x+4-2x}{3}\right)^3=\dfrac{64}{27}\)
\(y_{max}=\dfrac{64}{27}\) khi \(x=4-2x\Rightarrow x=\dfrac{4}{3}\)
b.
\(y=x\left(2-x\right)^2=\dfrac{1}{2}.2x.\left(2-x\right)\left(2-x\right)\le\dfrac{1}{2}\left(\dfrac{2x+2-x+2-x}{3}\right)^3=\dfrac{32}{27}\)
\(y_{max}=\dfrac{32}{27}\) khi \(2x=2-x\Rightarrow x=\dfrac{2}{3}\)
\(y=x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2\ge2\)
Vậy GTNN của hàm số là 2
\(y=\left|x^2-2x-3\right|=\left|x^2-2x+1-4\right|=\left|\left(x-1\right)^2-4\right|\)
\(y_{min}=0\) khi (x-1)^2=4
=>x-1=2 hoặc x-1=-2
=>x=-1 hoặc x=3
\(y_{max}=4\) khi |(x-1)^2-4|=4
=>(x-1)^2-4=4 hoặc (x-1)^2-4=-4
=>(x-1)^2=0 và (x-1)^2=8
=>\(x\in\left\{1;2\sqrt{2}+1;-2\sqrt{2}+1\right\}\)
Bài 1:
\(c,\text{PT có 2 }n_0\text{ phân biệt }\Leftrightarrow\Delta'=2^2-2m>0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
đồ thị hai hàm parabol có một điểm chung khi chúng có chung đỉnh
hay đỉnh I(1,3) của f(x) cũng là đỉnh của g(x)
dẫn đến giá trị nhỏ nhất của hai hàm là bằng nhau.
thế nên bài này sai ngay từ đề bài rồi nhé
hay nói cách khác , không tồn tại hai số a b thỏa mãn điều kiện trên
y = (x² - 1)(x + 3)(x + 5)
= [(x - 1)(x + 5)].[(x + 1)(x + 3)]
= (x² + 4x - 5)(x² + 4x + 3)
= [x² + 4x - 1) - 4].[(x² + 4x - 1) + 4]
= (x² + 4x - 1)² - 16 ≥ - 16
- Khi x = 0 ⇒ y = - 15
- Khi x = 1 ⇒ y = 0
- Khi x² + 4x - 1 = 0 ⇔ x = √5 - 2 ( loại giá trị x = - √5 - 2 < 0) ⇒ y = - 16
Vậy trên đoạn [0; 1] thì :
GTNN của y = - 16 khi x = √5 - 2
GTLN của y = 0 khi x = 1
\(y=\left|x^2-2x-2\right|\ge0\)
\(y_{min}=0\) khi \(x=1\pm\sqrt{3}\)
\(-\frac{b}{2a}=1\in\left[-1;3\right]\)
\(y\left(-1\right)=1\) ; \(y\left(1\right)=3\) ; \(y\left(3\right)=1\)
\(\Rightarrow y_{max}=3\) khi \(x=1\)
Mình không hiểu rõ lắm, có thể giải thích thêm không ạ ?