K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

\(A=\dfrac{x^2-2x+2}{x^2+2x+2}\)

\(\Leftrightarrow Ax^2+2Ax+2A=x^2-2x+2\)

\(\Leftrightarrow\left(A-1\right)x^2+\left(2A+2\right)x+\left(2A-2\right)=0\) (*)

Để (*) có nghiệm thì

\(\Delta'\ge0\Leftrightarrow\left(A+1\right)^2-2\left(A-1\right)^2\ge0\Leftrightarrow-A^2+6A-1\ge0\)

\(\Leftrightarrow3-2\sqrt{2}\le A\le3+2\sqrt{2}\)

Vậy GTNN của A là \(3-2\sqrt{2}\); GTLN của A là \(3+2\sqrt{2}\)

\(B=\dfrac{x^2+2x+2}{x^2+1}\)

Làm tương tự câu a ta được \(\dfrac{3-\sqrt{5}}{2}\le B\le\dfrac{3+\sqrt{5}}{2}\)

7 tháng 8 2017

A=\(\dfrac{x^2-2x+2}{x^2+2x+2}\)

AH
Akai Haruma
Giáo viên
15 tháng 11 2017

Lời giải:

Biểu thức 1:

\(y=\frac{2x^2-2x+2}{x^2+1}=\frac{2(x^2+1)-2x}{x^2+1}\)

\(\Leftrightarrow y=2-\frac{2x}{x^2+1}\)

Áp dụng BĐT AM-GM ta có: \(x^2+1\geq 2\sqrt{x^2}\Leftrightarrow x^2+1\geq 2|x|\)

\(\Rightarrow (x^2+1)^2\geq 4x^2\)

\(\Rightarrow \left(\frac{2x}{x^2+1}\right)^2\leq 1\Leftrightarrow -1\leq \frac{2x}{x^2+1}\leq 1\)

Từ đây suy ra \(\left\{\begin{matrix} y=2-\frac{2x}{x^2+1}\geq 1\Leftrightarrow x=1\\ y=2-\frac{2x}{x^2+1}\leq 3\Leftrightarrow x=-1\end{matrix}\right.\)

Vậy \(y_{\min}=1;y_{\max}=3\)

Biểu thức 2:

ĐKXĐ: $x,y$ không đồng thời bằng 0

\(Q=\frac{2x^2+4xy+5y^2}{x^2+y^2}=\frac{(x^2+y^2)+(x+2y)^2}{x^2+y^2}\)

\(\Leftrightarrow Q=1+\frac{(x+2y)^2}{x^2+y^2}\)

Ta thấy \((x+2y)^2\geq 0\forall x,y\in\mathbb{R}; x^2+y^2>0\) (nằm trong khoảng xác định)

\(\Rightarrow \frac{(x+2y)^2}{x^2+y^2}\geq 0\Rightarrow Q\geq 1\)

Vậy \(Q_{\min}=1\Leftrightarrow x=-2y\) và \(x,y \neq 0\)

Mặt khác theo BĐT Bunhiacopxky:

\((x+2y)^2\leq (x^2+y^2)(1+2^2)=5(x^2+y^2)\); \(x^2+y^2>0\) trong khoảng xác định

\(\Rightarrow \frac{(x+2y)^2}{x^2+y^2}\leq \frac{5(x^2+y^2)}{x^2+y^2}=5\)

\(\Rightarrow Q\leq 1+5\Leftrightarrow Q\leq 6\Leftrightarrow Q_{\max}=6\)

Dấu bằng xảy ra khi \(\frac{x}{1}=\frac{y}{2}\Leftrightarrow 2x=y\) và \(x,y\neq 0\)

24 tháng 7 2018

a. A=\(\dfrac{-2}{x^{2^{ }}-2x+5}\)= \(\dfrac{-2}{\left(x-1\right)^{2^{ }}+4}\)

Ta có: (x-1) 2 ≥ 0 với mọi x

⇔ (x- 1)2 +4 ≥4

\(\dfrac{-2}{\left(x-1\right)^{2^{ }}+4}\)\(\dfrac{-2}{4}\) = \(\dfrac{-1}{2}\)

Dấu''='' xảy ra ⇔ x-1=0

⇔x=1

Vậy maxA= -0,5 ⇔ x=1

b. B=\(\dfrac{3}{x^{2^{ }}-2x+1}\)=\(\dfrac{3}{\left(x-1\right)^2}\)

Ta có: (x-1)2 ≥ 0 với mọi x

\(\dfrac{3}{\left(x-1\right)^2}\)≤0

28 tháng 9 2017

Hỏi đáp Toán

28 tháng 9 2017

Hỏi đáp Toán

24 tháng 6 2018

\(\left(\dfrac{x-4}{2x-4}+\dfrac{2}{x^2-2x}\right):\dfrac{x-2}{x+1}\)

\(=\left(\dfrac{x-4}{2\left(x-2\right)}+\dfrac{2}{x\left(x-2\right)}\right).\dfrac{x+1}{x-2}\)

\(=\dfrac{x\left(x-4\right)+4}{2x\left(x-2\right)}.\dfrac{x+1}{x-2}\)

\(=\dfrac{x^2-4x+4}{2x\left(x-2\right)}.\dfrac{x+1}{x-2}\)

\(=\dfrac{\left(x-2\right)^2\left(x+1\right)}{2x\left(x-2\right)\left(x-2\right)}\)

\(=\dfrac{x+1}{2x}\)

25 tháng 6 2018

Mình làm nốt bài 2 nhé :

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)

\(\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\)

\(\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(c+a\right)}{c+a}+\dfrac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(\dfrac{a^2}{b+c}+a+\dfrac{b^2}{c+a}+b+\dfrac{c^2}{a+b}+c=a+b+c\)

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)


15 tháng 6 2018

a) \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)\)

\(=\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)\)

\(=\left(x-2\right)\left(x+2-3+2x\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) ĐKXĐ: x ≠ 5; x ≠ -5

Với điều kiện trên ta có:

\(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)

\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x^2-25\right)}=0\)

\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}=0\)

\(\Rightarrow2\left(x+5\right)^2-\left(x-5\right)^2-x\left(x+25\right)=0\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)

\(\Leftrightarrow5x-25=0\)

\(\Leftrightarrow5x=25\)

\(\Leftrightarrow x=5\)(Không thỏa mãn ĐKXĐ)

Vậy tập nghiệm của phương trình là S = ∅

c) ĐKXĐ: x ≠ 1

Với điều kiện trên ta có:

\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2x}{x^2+x+1}=0\)

\(\Rightarrow x^2+x+1-3x^2-2x\left(x-1\right)=0\)

\(\Leftrightarrow x^2+x+1-3x^2-2x^2+2x=0\)

\(\Leftrightarrow-4x^2+3x+1=0\)

\(\Leftrightarrow-4x^2+4x-x+1=0\)

\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(Khôngthoảman\right)\\x=-\dfrac{1}{4}\left(Thỏamãn\right)\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{1}{4}\right\}\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

A)

Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )

\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)

\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)

\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)

Có:

\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)

\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

B)

\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)

\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)

\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)

\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$

T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)

\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)

1 tháng 11 2018

+) điều kiện xác định : \(x\ge0\)

\(A_{max}\Leftrightarrow P=x+\sqrt{x}+1\) nhỏ nhất

ta có : \(P=x+\sqrt{x}+1\ge1\) \(\Rightarrow P_{min}=1\) khi \(x=0\)

\(\Rightarrow A_{max}=\dfrac{2}{1}=2\) khi \(x=0\)

+) điều kiện xác định : \(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

ta có : \(B-2x=\sqrt{x^2-4}\)

\(\Rightarrow B-2x\ge0\) \(\Leftrightarrow B\ge2x\) \(\Leftrightarrow\) \(B\ge4\)

\(\Rightarrow B_{min}=4\) khi \(x=2\)

31 tháng 10 2018

Bài này làm như thế nào ạ? Mysterious Person Nguyễn Thanh Hằng tran nguyen bao quan thanks!