K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

@ Việt Hoàng @ em làm bị nhầm rồi nhé!

Bài này sẽ được làm : 

\(D=-3x^2-9x-7\) Đưa -3 ra ngoài để đưa về hằng đẳng thứcL

\(=-3\left(x^2+3x+\frac{7}{3}\right)\)

\(=-3\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+\frac{7}{3}\right)\)

\(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\)=> \(-\text{​​}\text{​​}\)\(3\left(x+\frac{3}{2}\right)^2\le0\)=> \(-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)

=> \(D\le-\frac{1}{4}\)

Dấu "=" xảy ra <=> \(x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)

Vậy D min = -1/4 tại x =-3/2.

29 tháng 9 2019

\(D=-3x^2-9x-7\)

\(D=-\left(3x^2-9\right)-7\le-7\)

Dấu bằng xảy ra

 \(\Leftrightarrow-\left(3x^2-9x\right)=0\)

\(\Leftrightarrow3x^2-9x=0\)

\(\Leftrightarrow3x\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)

Vậy GTLN của D = -7 <=> x=0 hoặc x=3 

MÌnh làm sai thì thôi nha , mình cũng không chắc lắm.

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

18 tháng 12 2016

Ta có  \(A=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{\left(3x^2+9x+7\right)+10}{3x^2+9x+7}=\)

\(=\frac{3x^2+9x+7}{3x^2+9x+7}+\frac{10}{3x^2+9x+7}\)

\(=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}}\)

Từ đây suy ra A có GTLN là 41, khi \(x=-\frac{3}{2}\)

13 tháng 2 2017

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

18 tháng 12 2016

\(A=\frac{3x^2+9x+17}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}\)

Có: \(3x^2+9x+7=3\left(x^2+3x+\frac{9}{4}\right)+\frac{1}{4}=3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)

Vì: \(3\left(x+\frac{3}{2}\right)^2\ge0,\forall x\)

=> \(3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

=>\(\frac{10}{3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}}\le40\)

=> \(1+\frac{10}{3\left(x+\frac{3}{2}\right)^2+\frac{41}{4}}\le41\)

Vậy GTLN của A là \(\frac{81}{41}\) khi \(x=-\frac{3}{2}\)

18 tháng 12 2016

HELP ME !!!

22 tháng 11 2016

A=[2(x^2-8x+22)-1]/(x^2-8x+22)

A=2-1/[(x-4)^2+6]

A nho nhat khi (x-4)^2=0=> x=4

min(A)=2-1/6

22 tháng 12 2017

\(A=\dfrac{3x^2+9x+17}{3x^2+9x+7}=1+\dfrac{10}{3x^2+9x+7}=1+\dfrac{10}{3\left(x^2+2.x.\dfrac{9}{2}+\dfrac{81}{4}\right)-\dfrac{215}{4}}\\ =1+\dfrac{10}{3\left(x+\dfrac{9}{2}\right)^2-\dfrac{215}{4}}\le\dfrac{35}{43}\)

Câu khác giải TT

13 tháng 6 2019

A= 9- 2.(x^2-2x+ 1)= 9- 2.(x-1)2

Lại có (x-1)2 \(\ge\)0 => A\(\le\)

Vậy max A =9 <=> x-1=0 => x=1

b, B= 139/3-((x.√3)2+2.√3.2/(√3)+4/3)

= 139/3-(√3.x+2/√3)2

Lại có (√3.x+2/√3)2\(\ge\)0 => B\(\le\)139/3

Vậy maxB = 139/3 <=> x = -2/3

c,C= 25-2(x^2-2.x.3+9)= 25- 2(x-3)2

Laạạiại ccó (x-3)2\(\ge\)0

=> C\(\le\)25

Để max C = 25 <=> x-3= 0 <=> x=3

d, D=2163-( x^2-2.x.12+144)= 2163-(x-12)2

Lại có (x-12)2\(\ge\)

=> D\(\le\)2163

Để max D = 2163 <=> x-12 = 0 <=> x= 12

13 tháng 6 2019

hình như bạn nhầm đề à