Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dk \(1\le x\le3\)
\(P^2=x-1+3-x+2\sqrt{\left(x-1\right)\left(3-x\right)}\) =\(2+2\sqrt{\left(x-1\right)\left(3-x\right)}\)
ta co \(p^2\ge2\Rightarrow p\ge\sqrt{2}\) dau = xay ra khi \(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
\(P^2=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\le2+x-1+3-x=4\) (ap dung bdt amgm)\(\Rightarrow p\le2\)
dau = xay ra khi \(x-1=3-x\Leftrightarrow x=2\)
kl min p= \(\sqrt{2}khi\orbr{\begin{cases}x=1\\x=3\end{cases}}\) maxp= 2 khix=2
Bài 1:
\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)
\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)
Dấu = khi \(x=\sqrt{\frac{3}{2}}\)
Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)
a) Áp dụng bất đẳng thức Cô-si:
\(2=x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow\sqrt{xy}\le1\)
\(\Leftrightarrow xy\le1\)
Do \(x,y>0\Rightarrow xy>0\)
\(\Rightarrow0< xy\le1\)( đpcm )
b) Đề thiếu, cần thêm \(x+y=2\)và \(x,y>0\)
Áp dụng bất đẳng thức Cô-si :
\(x^2y^2\left(x^2+y^2\right)\)
\(=\frac{1}{2}\cdot xy\cdot2xy\cdot\left(x^2+y^2\right)\le\frac{1}{2}\cdot\frac{\left(x+y\right)^2}{4}\cdot\frac{\left(x^2+2xy+y^2\right)^2}{4}=\frac{1}{2}\cdot\frac{2^2}{4}\cdot\frac{2^4}{4}=2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
đkxđ : \(x\ge0,x\ne1\)
\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)
= \(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)