Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-2002\right|+\left|x-2003\right|=\left|x-2002\right|+\left|2003-x\right|\ge\left|-2002+2003\right|=1\)
Dấu ''='' xảy ra khi \(\left(x-2002\right)\left(2003-x\right)\ge0\Leftrightarrow2002\le x\le2003\)
Vậy GTNN của A bằng 1 tại 2002 =< x =< 2003
\(B=5,5-\left|2x-5\right|\le5,5\)
Dấu ''='' xảy ra khi x = 5/2
Vậy GTLN của B bằng 5,5 tại x = 5/2
1/ \(\left|a\right|=\frac{1}{3}\Rightarrow a=\pm\frac{1}{3};\left|b\right|=0,25=\frac{1}{4}\Rightarrow b=\pm\frac{1}{4}\)
Với a = 1/3, b = 1/4 thì \(A=3\cdot\frac{1}{3}-3\cdot\frac{1}{3}\cdot\frac{1}{4}-\frac{1}{4}=1-\frac{1}{4}-\frac{1}{4}=\frac{1}{2}\)
Với a = -1/3, b = -1/4 thì ....
Với a = -1/3, b = 1/4 thì...
Với a = 1/3,b = -1/4 thì...
2/
a, gõ lại đề
b, Vì \(\left|x+\frac{5}{6}\right|\ge0\Rightarrow B=2-\left|x+\frac{5}{6}\right|\le2\)
Dấu "=" xảy ra khi x + 5/6 = 0 <=> x = -5/6
Vậy Bmax = 2 khi x = -5/6
c, Ta có: \(\left|x\right|+\left|x+2\right|=\left|-x\right|+\left|x+2\right|\ge\left|-x+x+2\right|=2\)
Dấu "=" xảy ra khi \(-x\left(x+2\right)\ge0\Leftrightarrow-2\le x\le0\)
Vậy Cmin = 2 khi -2 <= x <= 0
\(6-2\left|1+3x\right|\le6\)'
Max \(A=6\Leftrightarrow1+3x=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=\frac{-1}{3}\)
\(\left|x-2\right|+\left|x-5\right|\ge0\)
Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
\(A=2\left|x-5\right|-2015\ge-2015\)
\(Min_A=-2015\Leftrightarrow x=5\)
\(B=205-\left|3x-5\right|\le205\)
\(Max_B=205\Leftrightarrow x=\frac{5}{3}\)
Bài 1:
Ta có: \(2x+\left|x-3\right|=4\)
\(\Leftrightarrow\left|x-3\right|=4-2x\)
Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
Bài 2:
a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)
Vậy Min(A) = 4 khi x = -5/3
b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)
Vậy Max(B) = 10 khi x = -1/2
\(A=\left|3,7-x\right|+2,5\)
\(\Rightarrow GTLN\)là 2,5
Khi 3,7 - x = 0
x = -3,7
-(x-5)^2<=0
=>B<=3
Dấu = xảy ra khi x=5