\(P=\frac{2019}{4x^2+4x+2020}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2020

\(P=\frac{2019}{4x^2+4x+2020}\)

Để \(P\)max \(\Leftrightarrow4x^2+4x+2020\)min

Ta có : \(4x^2+4x+2020=4\left(x+\frac{1}{2}\right)^2+2019\ge2019\)

Dấu " = " xảy ra : \(\Leftrightarrow x=-\frac{1}{2}\)

Vậy \(Max_P=1\Leftrightarrow x=-\frac{1}{2}\)

7 tháng 2 2020

Cho A= \(x-2x+2^2x-2^3x+2^4x-...+2^{2019}x=2^{2020}+1\)

                           \(x\left(1-2+2^2-2^3+...+2^{2019}\right)=2^{2020}+1\)

Đặt B= \(1-2+2^2-2^3+...+2^{2019}\)

2B= \(2-2^2+2^3-2^4+...+2^{2020}\)

2B+B= \(2^{2020}+1\)\(\Leftrightarrow B=\frac{2^{2020}+1}{3}\)

Thay B vào A, ta có: 

A= \(\frac{\left(2^{2020}+1\right)x}{3}=2^{2020}+1\)

\(\Rightarrow\left(2^{2020}+1\right)x=\left(2^{2020}+1\right).3\)

\(\Rightarrow x=3\)

x - 2x + 22x - 23x + ... + 22018x - 22019x = 22020 + 1 (sửa lại đề vì để nguyên như thế dãy không đi theo quy luật với tất cả số)

=> x(1 - 2 + 22 - 23 + ... + 22018 - 22019) = 22020 + 1

Đặt A = 1 - 2 + 22 - 23 + ... + 22018 - 22019

=> 2A = 2 - 22 + 23 - 24 + ... + 22019 - 22020

Lấy 2A cộng A theo vế ta có : 

2A + A = (2 - 22 + 23 - 24 + ... + 22019 - 22020) + (1 - 2 + 22 - 23 + ... + 22018 - 22019)

=> 3A = 22020 + 1

=> A = 22020 + 1 : 3

Khi đó (1) <=> x(22020 + 1) : 3 = 22020 + 1

=> x = 3

Vậy x = 3

6 tháng 9 2020

Dài đấy :))

a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)

\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)

\(\Leftrightarrow\left|x-1\right|+8=9\)

\(\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)

\(\Leftrightarrow\left(x-2\right)^2=36\)

\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)

c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))

\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)

\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)

\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)

\(\Leftrightarrow\left(x-5\right)^2=36\)

\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)

d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)

\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)

\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)

\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)

Vậy ta xét hai trường hợp sau :

1. \(x\ge-\frac{3}{16}\)

(*) <=>\(7x-2=4x+\frac{3}{4}\)

\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)

\(\Leftrightarrow3x=\frac{11}{4}\)

\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)

2. \(x< -\frac{3}{16}\)

(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)

\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)

\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)

\(\Leftrightarrow11x=\frac{5}{4}\)

\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)

Vậy x = 11/12

e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)

\(\Leftrightarrow x+1=4040\)

\(\Leftrightarrow x=4039\)

8 tháng 9 2020

ĐKXD là gì vậy

20 tháng 12 2019

1.

Có: \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\\ \Leftrightarrow\frac{7}{7}.\left(\frac{4x-5y}{7}\right)=\frac{9}{9}.\left(\frac{5z-3x}{9}\right)=\frac{11}{11}.\left(\frac{3y-4z}{11}\right)\\ \Leftrightarrow\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}=\frac{28x-35y+45z-27x+33y-44z}{49+81+121}\)

tính ra nó đc x+ 2y +z ko đc tròn cho lắm..... mệt r tự nghĩ tiếp đi

21 tháng 12 2019
https://i.imgur.com/JmxAxsh.jpg
27 tháng 3 2019

Giá trị của biểu thức lớn nhất khi mẫu số nhỏ nhất.

Ta có x2 + 4x + 2013 = x2 + 4x + 4 + 2009 = (x + 2)2 + 2009 >= 2009.

Biểu thức trên nhỏ nhất sẽ = 2009 khi (x + 2)2 = 0. Suy ra x = -2.

Vậy GTLN = 2012/2009.

27 tháng 3 2019

Ta có:\(x^2+4x+2013=\left(x^2+2\cdot2x+2^2\right)+2009=\left(x+2\right)^2+2009\)

\(\Rightarrow HUY=\frac{2012}{x^2+4x+2013}=\frac{2012}{\left(x+2\right)^2+2009}\)

Để HUY lớn nhất thì  \(\left(x+2\right)^2+2009\) nhỏ nhất.

Do \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+2009\ge2009\)

\(\Rightarrow HUY\ge\frac{2012}{2009}\)

Dấu "=" xảy ra khi và chỉ khi:\(\left(x+2\right)^2=0\Leftrightarrow x=-2\).

Vậy \(HUY_{max}=\frac{2012}{2009}\Leftrightarrow x=-2\)

By zZz Phan Gia Huy zZz.

25 tháng 8 2020

F = | 2x - 2 | + | 2x - 2003 |

F = | 2x - 2 | + | -( 2x - 2003 ) |

F = | 2x - 2 | + | 2003 - 2x |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001

Đẳng thức xảy ra khi ab ≥ 0

=> ( 2x - 2 )( 2003 - 2x ) ≥ 0

Xét hai trường hợp :

1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)

2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )

Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)

G = | 2x - 3 | + 1/2| 4x - 1 |

G = | 2x - 3 | + | 2x - 1/2 |

G = | -( 2x - 3 ) | + | 2x - 1/2 |

G = | 3 - 2x | + | 2x - 1/2 |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2

Đẳng thức xảy ra khi ab ≥ 0 

=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0

Xét 2 trường hợp :

1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)

2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )

=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)

H = | x - 2018 | + | x - 2019 | + | x - 2020 | 

H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]

H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]

H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]

Ta có : | x - 2019 | ≥ 0 ∀ x

| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )

=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2

Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)

=> x = 2019

=> MinH = 2 <=> x = 2019

10 tháng 8 2015

Để A lớn nhất thì x2+4x+7 phải có giá trị dương nhỏ nhất

Ta có:

x2+4x+7=(x+2)2+3\(\ge\)3

=> GTNN của x2+4x+7 là 3

=> GTLN của A là 5/3