Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{-5x^2+3x+2}=\frac{2}{\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}}\)
\(A=\frac{2}{-5\left(x^2-\frac{3}{5}+\frac{9}{100}\right)+\frac{49}{20}}=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\ge\frac{2}{\frac{49}{20}}=\frac{40}{49}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-5\left(x-\frac{3}{10}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{3}{10}\)
Vậy GTNN của \(A\) là \(\frac{40}{49}\) khi \(x=\frac{3}{10}\)
\(B=\frac{5}{5x^2+4x+1}=\frac{5}{\left(5x^2+4x+\frac{4}{5}\right)+\frac{1}{5}}\)
\(B=\frac{5}{5\left(x^2+\frac{4}{5}x+\frac{4}{25}\right)+\frac{1}{5}}=\frac{5}{5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}}\le\frac{5}{\frac{1}{5}}=25\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(5\left(x+\frac{2}{5}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-2}{5}\)
Vậy GTLN của \(B\) là \(25\) khi \(x=\frac{-2}{5}\)
Chúc bạn học tốt ~
a) Ta có: A bé nhất khi \(-5x^2+3x+2\) lớn nhất
Ta có: \(-5x^2+3x+2=\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}\)
\(=-5\left(x^2-2.\frac{3}{10}+\frac{9}{100}\right)=-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}\le\frac{49}{20}\)
Do đó \(A=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\le\frac{40}{49}\)
Dấu "=" xảy ra \(\Leftrightarrow-5\left(x-\frac{3}{10}\right)^2=0\Leftrightarrow x=\frac{3}{10}\)
Vậy \(A_{max}=\frac{40}{49}\Leftrightarrow x=\frac{3}{10}\)
b) Để B lớn nhất thì \(5x^2+4x+1\) bé nhất.Ta có:
\(5x^2+4x+1=\left(5x^2+4x\right)+1\)
\(=5\left(x^2+\frac{4}{5}x\right)+1=5\left(x^2+2.\frac{4}{10}+\frac{4}{25}\right)+\frac{1}{5}\)
\(=5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
Do đó \(B=\frac{5}{5\left(x+\frac{2}{5}\right)^2}\le\frac{5}{\frac{1}{5}}=25\)
Dấu "=" xảy ra \(\Leftrightarrow5\left(x+\frac{2}{5}\right)^2=0\Leftrightarrow x=-\frac{2}{5}\)
Vậy \(B_{max}=25\Leftrightarrow x=-\frac{2}{5}\)
Hàn Dĩnh \(-5\left(x^2+\dfrac{4}{5}x+\dfrac{4}{25}\right)+\dfrac{9}{5}\)Đặt -5 ta ngoài ở trong còn x^2 ; 4/5x rồi cộng 4/25 để thành hằng đẳng thức .NHưng đề bài là +1 , bây giờ mình phải + 9/5 để = 1 , đúng với đề bài
\(a,4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^24\le\)Vậy GTLN của biểu thức là \(4\) khi \(2-x=0\Rightarrow x=2\)
\(b,-5x^2-4x+1=-5\left(x^2+\dfrac{4}{5}x+\dfrac{4}{25}\right)+\dfrac{9}{5}=-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\le\dfrac{9}{5}\)Vậy GTLN của biểu thức là \(\dfrac{9}{5}\) khi \(x+\dfrac{2}{5}=0\Rightarrow x=\dfrac{-2}{5}\)
-5x2 - 4x + 1 lớn nhất khi x bé nhất suy ra x=0 vậy gt lớn nhất = 1
\(=-5x^2-x+5x+1=x\left(5x+1\right)+\left(5x+1\right)\)
\(=\left(5x+1\right)\left(x+1\right)\le0\)
MAX=0 khi\(\orbr{\begin{cases}5x+1=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\x=-1\end{cases}}}\)
a) \(A=25x^2-10x+9\)
\(A=\left(5x\right)^2-2\cdot5x\cdot1+1^2+9\)
\(A=\left(5x-1\right)^2+9\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)
a 4x -x^2 +3
= -x^2 +4x+3
=-x^2+4x+4-1
=-(x+2)^2-1>=-1
"="xảy ra khi (x+2)^2=0
tương đương x+2=0
tương đương x=-2
vậy GTLN của 4x-x^2+3 là -2 khi x=-2