Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều cần nhớ: Một số mũ chẵn luôn lớn hơn hoặc bằng 0 với mọi x thuộc R
Giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
a)
A = x^2 + 4x + 5
A = x^2 + 2x + 2x + 4 + 1
A = x(x + 2) + 2(x + 2) + 1
A = (x + 2)(x + 2) + 1
A = (x + 2)^2 + 1
Mà (x + 2)^2 >= 0 (Với mọi x thuộc R)
=> A = (x + 2)^2 + 1 >= 0 + 1 = 1
=> Giá trị nhỏ nhất của A là 1 khi và chỉ khi (x + 2)^2 = 0 => x = -2
b)
C = (x - 2)^2 + (y + 5)^10 + 2015
Mà:
(x - 2)^2 >= 0(Với mọi x thuộc R)
(y + 5)^10 >= 0(Với mọi y thuộc R)
=> C = (x - 2)^2 + (y + 5)^10 + 2015 >= 0 + 0 + 2015 = 2015
Vậy giá trị nhỏ nhát của C là 2015 khi và chỉ khi: (x - 2)^2 = 0 => x = 2 và (y + 5)^10 = 0 => y = -5
c)
\(D=x^2+|y-1|-7\)
Mà:
x^2 >= 0((Với mọi x thuộc R)
\(|y-1|\ge0\left(\forall y\in R\right)\)
=> \(D=x^2+|y-1|-7\ge0+0-7=-7\)
Vậy giá trị nhỏ nhất của D là -7 khi x^2 = 0 => x = 0 và y = 1
4x2 - 5x + 1 = 0
4x2 - 4x - x + 1 = 0
4x ( x - 1 ) - ( x - 1 ) = 0
( 4x - 1 ) ( x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=1\end{cases}}\)
\(a)\) Ta có :
\(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=\left|1\right|=1\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)\left(2-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}\Leftrightarrow}1\le x\le2}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-1\le0\\2-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge2\end{cases}}}\) ( loại )
Vậy GTNN của \(A\) là \(1\) khi \(1\le x\le2\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-8\right|\)
\(B=\left(\left|x-1\right|+\left|x-8\right|\right)+\left|x-2\right|\)
\(B=\left(\left|x-1\right|+\left|8-x\right|\right)+\left|x-2\right|\)
\(B\ge\left|x-1+8-x\right|+\left|x-2\right|=7+\left|x-2\right|\ge7\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)\left(8-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le8\\x=2\end{cases}}}\) ( thoả mãn )
Vậy GTNN của \(B\) là \(7\) khi \(x=2\)
Chúc bạn học tốt ~
a) A(x) = -4x5 - x3 + 4x2 + 5x + 9 + 4x5 - 6x2 - 2
= - x3 - 2x2 + 5x + 7
B(x) = -3x4 - 2x3 + 10x2 - 8x + 5x3 - 7 - 2x3 + 8x
= - 3x4 + x3 + 10x2 - 7
b) P(x) = A(x) + B(x)
= - x3 - 2x2 + 5x + 7 - 3x4 + x3 + 10x2 - 7
= - 3x4 + 8x2 + 5x
Q(x) = A(x) - B(x)
= - x3 - 2x2 + 5x + 7 - (- 3x4 + x3 + 10x2 - 7)
= - x3 - 2x2 + 5x + 7 + 3x4 - x3 - 10x2 + 7
= 3x4 - 2x3 - 12x2 + 5x + 14
c) Thế x = -1 vào đa thức P(x), ta có:
P(-1) = - 3.(-1)4 + 8.(-1)2 + 5.(-1) = -3 + 8 + (-5) = 0
Vậy x = -1 là nghiệm của đa thức P(x).
a. * A(x) = \(-2x^2+3x-4x^3+\dfrac{3}{5}-5x^4\)
A(x)= \(-5x^4-4x^3-2x^2+3x+\dfrac{3}{5}\)
*B(x) = \(3x^4+\dfrac{1}{5}-7x^2+5x^3-9x\)
B(x)= \(3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\)
A(x) +B(x) = \(-5x^4-4x^3-2x^2+3x+\dfrac{3}{5}+3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\)
\(-\left(5x^4-3x^4\right)-\left(4x^3-5x^3\right)-\left(2x^2+7x^2\right)+\left(3x-9x\right)+\left(\dfrac{3}{5}+\dfrac{1}{5}\right)\)
\(=-2x^4+x^3-9x^2-6x+\dfrac{4}{5}\)
B(x)-A(x)=\(\left(3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\right)-\left(5x^4-4x^3-2x^2+3x+\dfrac{3}{5}\right)\)
\(3x^4+5x^3-7x^2-9x+\dfrac{1}{5}-5x^4+4x^3+2x^2-3x-\dfrac{3}{5}\)
\(\left(3x^4-5x^4\right)+\left(5x^3+4x^3\right)-\left(7x^2-2x^2\right)-\left(9x+3x\right)+\left(\dfrac{1}{5}-\dfrac{3}{5}\right)\)
\(-2x^4+9x^3-5x^2-12x+\dfrac{2}{5}\)
Đúng 100% nha.Bạn Thanh bạn ấy tính nhầm và àm nhầm nên kq mới như vậy
Cho 2 đa thức sau: A(x)=-2x2+3x-4x3+\(\dfrac{3}{5}\)-5x4
B(x)=3x4+\(\dfrac{1}{5}\)-7x2+5x3-9x
a.sắp xếp các đa thức sau theo lũy thừa giảm dần của biến.
A(x)= -5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\)
B(x)= 3x4 +5x3 -7x2 -9x+ \(\dfrac{1}{5}\)
b. A(x)+B(x)=(-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\))+ (3x4 +5x3 -7x2 -9x+\(\dfrac{1}{5}\) ) =-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\)+3x4 +5x3 -7x2 -9x +\(\dfrac{1}{5}\)
= (-5x4 +3x4 )+(-4x3 +5x3) +(-2x2 -7x2)+(3x-9x)+(\(\dfrac{3}{5}\)+\(\dfrac{1}{5}\))
= -2x4 +x3 -8x2 -6x+\(\dfrac{4}{5}\)
A(x)-B(x)=(-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\))-(3x4 +5x3 -7x2 -9x+\(\dfrac{1}{5}\) )
=-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\)-3x4 -5x3 +7x2 +9x-\(\dfrac{1}{5}\)
=(-5x4 -3x4 )+(-4x3-5x3) +(-2x2 +7x2)+(3x+9x)+(\(\dfrac{3}{5}\)-\(\dfrac{1}{5}\))
=-8x4-9x2+5x2+12x+\(\dfrac{2}{5}\)
CHÚC BN HỌC TỐT
a)
A(x)=(-4x5+4x5)-x3+(4x2-6x2)+5x+(9-2)
=-x3-2x2+5x+7
B(x)=-3x4-(2x3-5x3+2x3)+10x2-(8x-8x)-7
-3x4+x3+10x2-7
b)
A(x)= -x3- 2x2 + 5x+7
B(x)=-3x4+x3+10x2 -7
P(x)=-3x4-0+8x2 +5x+0
A(x)= -x3- 2x2 + 5x+7
B(x)=-3x4+x3+10x2 -7
Q(x)=3x4-2x3-12x10+5x+14
c)Thay x=-1 vào đt P(x)
Ta có: P(-1)=(-3)(-1)4-8(-1)2+5(-1)
=-3-8+5
=0
CHO MIK NHA
THANK!
CHÚC PN HỌC GIỎI ^ -*
A(x)=- x3 -2x2+5x+7
B(x)=- 3x4 + x3+10x2-7
P(x)=- 3x4+8x2+5x
Q(x)=3x4-2x3-12x2+5x+14
thay x=-1 vào P(x) =>P(x)=0 => x= -1 là nghiệm của đa thức