Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0
a + b + c = 6
\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)
\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)
Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)
đề bài cho x+y=2
vậy : \(\left(x+y\right)^2=4\) định lí Mori
\(P=x^2.y^2.\left\{\left(x+y\right)^2-2xy\right\}\)
mặt khác ta có
\(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow2xy\le\frac{\left(x+y\right)^2}{2}\)
suy ra
\(P\le x^2y^2\left\{\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\right\}\)
có x+y=2
\(\Rightarrow P\le x^2y^2\left(4-2\right)=2x^2y^2\)
ta lại có
\(2x^2y^2\le\frac{\left(x^2+y^2\right)^2}{2}=\frac{\left\{\left(x+y\right)^2-2xy\right\}^2}{2}\)
\(p\le\frac{\left(4-2xy\right)^2}{2}\)
có 2xy=2 ( cmr)
\(P\le\frac{\left(4-2\right)^2}{2}=2\)
vậy giá trị lớn nhất của P là 2 dấu = xảy ra khi x=y=1
Ta có :
\(B=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{2a}=\frac{2}{a}\)
Dấu "=" xảy ra <=> \(x=y=a\)
Vậy \(B_{min}=\frac{2}{a}\) tại \(x=y=a\)
\(P=\frac{x}{x+1}+\frac{y}{y+1}=2-\frac{1}{x+1}-\frac{1}{y+1}\)
\(\le2-\frac{4}{2+x+y}=2-\frac{4}{2+1}=\frac{2}{3}\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Bạn kia làm đúng rồi^_^