Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}=1+\frac{2}{x^2-6x+12}\)
ta có: \(x^2-6x+12=x^2-2.3.x+3^2+4=\left(x-3\right)^2+4\ge4\)
để Bmax => \(\left(\frac{2}{x^2-6x+12}\right)max\Rightarrow x^2-6x+12min\)và lớn hơn 0 vì 2>0
mà \(\left(x-3\right)^2+4\) \(\ge\)4
dấu = xảy ra khi x-3=0
=> x=3
Vậy \(MaxB=\frac{3}{2}\)khi x=3
\(B=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\Rightarrow B_{max}=\frac{3}{4}\) khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
2/ Xem lại đề bài, đề bài này thì ko có max, 12 ở mẫu là dấu + thì may ra làm được
1, B=\(\frac{3}{4x^2-4x+5}\)
=\(\frac{3}{\left(4x^2-2.2x+4\right)+5-4}\)
=\(\frac{3}{\left(2x-2\right)^2+1}\le\frac{3}{1}=3\)
Để B=3 thì : (2x-2)2=0
\(\Leftrightarrow2x-2=0\)
\(\Leftrightarrow x=1\)
Vậy Max B =3 \(\Leftrightarrow x=1\)
\(P=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}=\frac{x^2-6x+12}{x^2-6x+12}+\frac{2}{x^2-6x+12}=1+\frac{2}{x^2-6x+12}\)
\(=1+\frac{2}{\left(x^2-6x+9\right)+3}=1+\frac{2}{\left(x^2-2.x.3+3^2\right)+3}=1+\frac{2}{\left(x-3\right)^2+3}\)
P lớn nhất \(\Leftrightarrow\) \(\frac{2}{\left(x-3\right)^2+3}\) lớn nhất \(\Leftrightarrow\left(x-3\right)^2+3\) nhỏ nhất
Ta có: \(\) \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+3\ge3\)
\(\Rightarrow\frac{2}{\left(x-3\right)^2+3}\le\frac{2}{3}\)
Do đó GTLN của \(\frac{2}{\left(x-3\right)^2+3}\) là 2/3
=> GTLN của \(P=1+\frac{2}{3}=\frac{5}{3}\)
Dấu "=" xảy ra <=> x=3
A + 1 = x^2+1+6x+8/x^2+1
= x^2+6x+9/x^2+1
= (x+3)^2/x^2+1 >= 0
=> A >= -1
Dấu "=" <=> x+3=0 <=> x=-3
Vậy ............
Tk mk nha
a, Để A đạt GTLN thì \(x^2-6x+1\) đạt GTNN.
\(x^2-2x3+3^2-8\)
\(\left(x-3\right)^2-8\ge-8\)
Dấu "=" xảy ra khi \(x-3=0\)\(\Rightarrow\)\(x=3\)
Vậy GTNN của \(x^2-6x+1\)là -8 khi x=3
Thay x = 3 vào biểu thức a ta được:
\(A=\frac{5}{9-18+1}=-\frac{5}{8}\)
Vậy GTLN của A là -5/8
vì tử thức là 2 không đổi , để biểu thức A có giá trị khi mẫu thức : \(x^2-6x+1\)có GTLN mà : \(x^2-6x+1=[(x^2+2x\frac{6}{2}+\frac{36}{4})-\frac{36}{4}+1]=[(x+\frac{6}{2})^2-8]\) =\(-8+(x+\frac{6}{2})^2\)vì \((x-\frac{6}{2})^2\ge0\forall x\)\(\Rightarrow x^2-6x+1=-8+(x+\frac{6}{2})^2\le-8\) vậy GTNN \(x^2-6x+1=-8\)đạt được khi \((x+\frac{6}{2})^2=\Rightarrow x=-\frac{6}{2}\)\(\Rightarrow A\ge-8\)vậy MAX\((A)=-8\)đạt đươc \(\Leftrightarrow x=-\frac{6}{2}\)
c) ĐK: $x\neq \pm 2$
PT \(\Leftrightarrow \frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2(x-11)}{x^2-4}\)
\(\Leftrightarrow \frac{(x-2)^2-3(x+2)}{(x+2)(x-2)}=\frac{2(x-11)}{(x-2)(x+2)}\)
\(\Leftrightarrow \frac{x^2-7x-2}{(x-2)(x+2)}=\frac{2x-22}{(x-2)(x+2)}\)
\(\Rightarrow x^2-7x-2=2x-22\)
\(\Leftrightarrow x^2-9x+20=0\Leftrightarrow (x-4)(x-5)=0\Rightarrow x=4\) hoặc $x=5$
(đều thỏa mãn)
d) ĐK: \(x^2-6x+7\neq 0\)
PT \(\Leftrightarrow (x^2-6x+7)+\frac{14}{x^2-6x+7}-9=0\)
\(\Rightarrow (x^2-6x+7)^2-9(x^2-6x+7)+14=0\)
\(\Leftrightarrow (x^2-6x+7-2)(x^2-6x+7-7)=0\)
\(\Leftrightarrow (x^2-6x+5)(x^2-6x)=0\)
\(\Leftrightarrow (x-1)(x-5)x(x-6)=0\)
\(\Rightarrow x\in \left\{1;5;0;6\right\}\) (đều thỏa mãn)
Vậy.........
a) ĐKXĐ: $x\neq 1$
PT \(\Leftrightarrow \frac{x^2+x+1+2(x-1)}{(x-1)(x^2+x+1)}=\frac{3x^2}{x^3-1}\)
\(\Leftrightarrow \frac{x^2+3x-1}{x^3-1}=\frac{3x^2}{x^3-1}\)
\(\Rightarrow x^2+3x-1=3x^2\Leftrightarrow 2x^2-3x+1=0\)
\(\Leftrightarrow (x-1)(2x-1)=0\)
Mà $x\neq 1$ nên $2x-1=0\Rightarrow x=\frac{1}{2}$ là nghiệm
b) ĐK: $x\neq \pm 2$
PT \(\Leftrightarrow \frac{3-x}{2-x}=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{3-x}{2-x}=\frac{6-x}{3(x^2-4)}\)
\(\Leftrightarrow \frac{1}{x+2}+\frac{3-x}{x-2}=\frac{6-x}{3(x-2)(x+2)}\)
\(\Leftrightarrow \frac{-x^2+2x+4}{(x-2)(x+2)}=\frac{6-x}{3(x-2)(x+2)}\)
\(\Rightarrow 3(-x^2+2x+4)=6-x\)
\(\Leftrightarrow -3x^2+7x+6=0\)
\(\Leftrightarrow (x-3)(3x+2)=0\Rightarrow x=3\) hoặc $x=-\frac{2}{3}$
Vậy........
\(B=\frac{x^2-6x+14}{x^2-6x+12}\)
\(B=\frac{x^2-6x+12+2}{x^2-6x+12}\)
\(B=1+\frac{2}{\left(x-3\right)^2+3}\le1+\frac{2}{3}\)
\(B=1+\frac{2}{\left(x-3\right)^2+3}\le\frac{5}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow x=3\)
B=\(\frac{x^2-6x+14}{x^2-6x+12}\)
=\(\frac{x^2-6x+9+3+2}{x^2-6x+9+3}\)
=\(\frac{\left(x^2-6x+9\right)+3+2}{\left(x^2-6x+9\right)+3}\)
=\(\frac{\left(x-3\right)^2+3+2}{\left(x-3\right)^2+3}\)
=\(\frac{\left(x-3\right)^2+3}{\left(x-3\right)^2+3}+\frac{2}{\left(x-3\right)^2+3}\)
=1+\(\frac{2}{\left(x-3\right)^2+3}\)
*Ta có:(x-3)2 \(\ge\) 0;với mọi x;cộng 3 vào 2 vế
\(\Rightarrow\)(x-3)2+3 \(\ge\) 0+3;với mọi x
\(\Rightarrow\)(x-3)2+3 \(\ge\) 3;với mọi x
\(\Rightarrow\)\(\frac{2}{\left(x-3\right)^2+3}\) \(\ge\) 0;với mọi x;lấy hai vế cộng cho1
\(\Rightarrow\)\(1+\frac{2}{\left(x-3\right)^2+3}\) \(\ge\)1+0;với mọi x
Vậy .................................