K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 9 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz})^2=(\sqrt{x}.\sqrt{x+yz}+\sqrt{y}.\sqrt{y+xz}+\sqrt{z}.\sqrt{z+xy})^2\)

\(\leq (x+y+z)(x+yz+y+xz+z+xy)=xy+yz+xz+1\)

\(\Rightarrow \sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}\leq \sqrt{xy+yz+xz+1}\)

\(\Rightarrow A\leq \sqrt{xy+yz+xz+1}+9\sqrt{xyz}\)

The BĐT AM-GM (Cô-si) thì:

\(1=x+y+z\geq 3\sqrt[3]{xyz}\Rightarrow xyz\leq \frac{1}{27}\)

\(x^2+y^2+z^2\geq xy+yz+xz\Rightarrow (x+y+z)^2\geq 3(xy+yz+xz)\)

\(\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

\(\Rightarrow A\leq \sqrt{\frac{1}{3}+1}+9\sqrt{\frac{1}{27}}=\frac{5\sqrt{3}}{3}\)

Vậy \(A_{\max}=\frac{5\sqrt{3}}{3}\Leftrightarrow x=y=z=\frac{1}{3}\)

NV
23 tháng 8 2020

Trước hết ta c/m BĐT: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

Thật vây, BĐT tương đương: \(a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Áp dụng:

\(A\le\sqrt{2\left(9-x+x-1\right)}=\sqrt{2.8}=4\)

\(A_{max}=4\)

3 tháng 6 2018

mình mới lớp 6 thôi 

10 tháng 12 2021

Theo đề bài, ta có:

x3+y3=x2−xy+y2x3+y3=x2−xy+y2

hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0

⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1

+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52

+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4

Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

16 tháng 9 2020

Ta có:\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\Rightarrow x+y+z=xyz\)

Dễ có một vài phép biến đổi cơ bản và bất đẳng thức AM - GM:\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+x^2yz}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)

\(=\sqrt{\frac{x}{x+z}\cdot\frac{x}{x+y}}\le\frac{\frac{x}{x+z}+\frac{x}{x+y}}{2}\)

Khi đó:\(LHS\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{x+z}+\frac{y}{z+y}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Đẳng thức xảy ra tại \(x=y=z=\sqrt{3}\)

Để hàm số là hàm số bậc nhất thì hệ số \(a\ne0\)

a) Cm : \(\sqrt{3-m}\ne0\Rightarrow m\ne3\)

b) \(\frac{m-5}{m+2}\ne0\Rightarrow m\ne5\)

Bài 2 : 

Để hàm số đồng biến thì hệ số \(a>0\)

Để hàm số nghịch biến thì hệ số \(a< 0\)

Gợi ý z tư làm nha