K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

\(A=2x-2x^2-5\)

\(A=-2\left(x^2-x\right)-5\)

\(A=-2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}-5\)

\(A=-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\)

Có \(2\left(x-\frac{1}{2}\right)^2\ge0\)với mọi x

=> \(-2\left(x-\frac{1}{2}\right)^2\le0\)với mọi x

=> \(-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\le-4\frac{1}{2}\)với mọi x

=> \(A\le-4\frac{1}{2}\)với mọi x

Dấu "=" xảy ra <=> \(x-\frac{1}{2}=0\)<=> \(x=\frac{1}{2}\)

KL: \(A_{max}=-4\frac{1}{2}\)<=> \(x=\frac{1}{2}\)

17 tháng 8 2019

a

\(N=x-x^2\)

\(\Leftrightarrow-N=x^2-x\)

\(\Leftrightarrow-N+\frac{1}{4}=x^2-x+\frac{1}{4}\)

\(\Leftrightarrow-N+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)

\(\Leftrightarrow-N=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)

\(\Rightarrow N_{max}=-\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)

17 tháng 8 2019

\(N=x-x^2\)

\(=-x^2+2.x.\frac{1}{2}-\frac{1}{4}+\frac{1}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(-\left(x-\frac{1}{2}\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le0+\frac{1}{4};\forall x\)

Hay \(N\le\frac{1}{4};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\)

                        \(\Leftrightarrow x=\frac{1}{2}\)

Vậy MAX \(N=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)

13 tháng 9 2017

N = 2x - 2x2 - 5

= -2x2 + 2x - 5

= -2(x2 - x + \(\dfrac{5}{2}\))

= -2(x2 - 2.x.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{9}{4}\))

= -2(x2 - 2.x.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\)) - \(\dfrac{9}{2}\)

= -2(x - \(\dfrac{1}{2}\))2 - \(\dfrac{9}{2}\) \(\le-\dfrac{9}{2}\)

Vậy GTLN của N là \(-\dfrac{9}{2}\) khi x - \(\dfrac{1}{2}\) = 0 \(\Rightarrow\) x = \(\dfrac{1}{2}\).

9 tháng 9 2020

\(N=2x-2x^2-5\)

\(=-2\left(-x+x^2+\frac{5}{2}\right)\)

\(=-2\left(x^2-x+\frac{5}{2}\right)\)

\(=-2\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{9}{4}\right)\)

\(=-2\left[\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{9}{4}\right]\)

\(=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)

\(=-2.\left(x-\frac{1}{2}\right)^2-2.\frac{9}{4}\)

\(=-2.\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)

Dấu = xảy ra khi:

\(-2\left(x-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Rightarrow x-\frac{1}{2}=0\)

\(\Rightarrow x=0+\frac{1}{2}=\frac{1}{2}\)

áp dụng CT này vô nha:

\(A=\text{ax}^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\left(a\ne0\right)\)

nếu a<0 thì \(A\le\dfrac{4ac-b^2}{4a}\) tại \(x=-\dfrac{b}{2a}\)

nếu a>0 thì \(A\ge\dfrac{4ac-b^2}{4a}\) tại \(x=-\dfrac{b}{2a}\)

công thức này được áp dụng dạng bài tìm GTLN và GTNN của tam thức bậc 2 nha

áp dụng câu đầu:

\(A=2x^2-8x-10\\ A=2\left(x+\dfrac{-8}{2.2}\right)^2+\dfrac{4.2.\left(-10\right)-\left(-8\right)^2}{4.2}\ge\dfrac{4.2.\left(-10\right)-\left(-8\right)^2}{4.2}=-18\)

đẳng thức xảy ra khi \(x=-\dfrac{-8}{2.2}=2\)

vậy MIN A=-18 tại x=2

không tin thì bạn thử lại bằng máy tính nha :))

13 tháng 7 2019

\(A=-x^2-4x-2\)

\(\Leftrightarrow-A=x^2+4x+2\)

\(\Leftrightarrow-A=x^2+4x+4-2\)

\(\Leftrightarrow-A=\left(x+2\right)^2-2\)

Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-2\ge-2\)hay \(-A\ge-2\)

\(\Rightarrow A\le2\)

Vậy GTLN của A là 2\(\Leftrightarrow x=-2\)

11 tháng 9 2020

Câu 1.

P = x2 - 2x + 5 

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinP = 4 <=> x = 1

Q = 2x2 - 6x

= 2( x2 - 3x + 9/4 ) - 9/2

= 2( x - 3/2 )2 - 9/2 ≥ -9/2 ∀ x

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinQ = -9/2 <=> x = 3/2

M = x2 + y2 - x + 6y + 10

= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4

= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

=> MinM = 3/4 <=> x = 1/2 ; y = -3

Câu 2.

A = 4x - x2 + 3

= -( x2 - 4x + 4 ) + 7

= -( x - 2 )2 + 7 ≤ 7 ∀ x

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxA = 7 <=> x = 2

B = x - x2

= -( x2 - x + 1/4 ) + 1/4

= -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MaxB = 1/4 <=> x = 1/2

N = 2x - 2x2

= -2( x2 - x + 1/4 ) + 1/2

= -2( x - 1/2 )2 + 1/2 ≤ 1/2 ∀ x

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MaxB = 1/2 <=> x = 1/2

11 tháng 9 2020

Làm gần xong thì lỡ bấm out ra TT

\(P=x^2-2x+5=\left(x-1\right)^2+4\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy minP = 4 <=> x = 1

\(Q=2x^2-6x=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)

Vậy minQ = - 9/2 <=> x = 3/2

\(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

Vậy minM = 3/4 <=> x = 1/2 và y = - 3