Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,2x−x2=−(x2−2x+1)+1a,2x−x2=−(x2−2x+1)+1
=−(x−1)2+1≤1∀x=−(x−1)2+1≤1∀x
Vậy GTLN của biểu thức là 1 khi x - 1 =0 => x = 1
b,−2x2−4x+6=−2(x2+2x+1)+8b,−2x2−4x+6=−2(x2+2x+1)+8
=−2(x+1)2+8≤8∀x=−2(x+1)2+8≤8∀x
vậy GTLN của bt là 8 khi x + 1 =0 => x = -1
~ Học tốt~
a. \(-\left(x^2-2x+1\right)+1.\)
\(-\left\{\left(x^2-x\right)-\left(x-1\right)\right\}+1\)
\(-\left\{x\left(x-1\right)-\left(x-1\right)\right\}+1\Leftrightarrow-\left(x^2-1\right)+1\le1\) " =" xảy ra khi x^2=1
\(b.-2x^2-4x-2+8\)
\(-2\left(x^2+2x+1\right)+8\)
\(-2\left(x+1\right)^2+8\le8\) dấu = xảy ra khi x=-1
Ta có: \(\left\{{}\begin{matrix}x^3y^5z^7.x^3y^2z=2^7\\\dfrac{x^3y^5z^7}{x^3y^2z}=2^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^6y^7z^8=2^7\\y^3z^6=2^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}yz^2=2\\\left(xyz\right)^6.yz^2=2^7\end{matrix}\right.\)
\(\Rightarrow\left(xyz\right)^6=2^6\)
\(\Rightarrow\left\{{}\begin{matrix}xyz=2\\xyz=-2\end{matrix}\right.\)
Bài 1 :
a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)
Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)
b) Ta thấy : \(B=x^2+4x-100\)
\(=\left(x+4\right)^2-104\ge-104\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy \(Min_B=-104\Leftrightarrow x=-4\)
c) Ta thấy : \(C=\frac{4-x}{x-3}\)
\(=\frac{3-x+1}{x-3}\)
\(=-1+\frac{1}{x-3}\)
Để C min \(\Leftrightarrow\frac{1}{x-3}\)min
\(\Leftrightarrow x-3\)max
\(\Leftrightarrow x\)max
Vậy để C min \(\Leftrightarrow\)\(x\)max
p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình
Bài 2 :
a) Ta thấy : \(x^2\ge0\)
\(\left|y+1\right|\ge0\)
\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)
\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)
b) Để B max
\(\Leftrightarrow\left(x+3\right)^2+2\)min
Ta thấy : \(\left(x+3\right)^2\ge0\)
\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)
c) Ta thấy : \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow x^2+2x+1\ge0\)
\(\Leftrightarrow-x^2-2x-1\le0\)
\(\Leftrightarrow C=-x^2-2x+7\le8\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy \(Max_C=8\Leftrightarrow x=-1\)
Bài 2:
$P=\frac{x^2+y^2+3}{x^2+y^2+2}=\frac{(x^2+y^2+2)+1}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}$
Ta thấy:
$x^2\geq 0; y^2\geq 0$ với mọi $x,y$
$\Rightarrow x^2+y^2+2\geq 2$
$\Rightarrow P\leq 1+\frac{1}{2}=\frac{3}{2}$
Vậy GTNN của $P$ là $\frac{3}{2}$
Giá trị này đạt tại $x^2=y^2=0\Leftrightarrow x=y=0$
a) thu gọn đi rùi tìm ngiệm nhưng chắc đa thức P(x) ko có nghiệm đâu!!!!
nghĩ thui
Ta có: \(f\left(0\right)=a.0^2+b.0+c=0+0+c=c\) mà \(f\left(0\right)=1\)\(\Rightarrow c=1\)
\(f\left(1\right)=a.1^2+b.1^2+c=a+b+1\)mà \(f\left(1\right)=2\)\(\Rightarrow a+b+1=2\)\(\Rightarrow a+b=1\)
\(f\left(2\right)=a.2^2+2.b+c=4a+2b+1\)mà \(f\left(2\right)=8\)\(\Rightarrow4a+2b+1=8\)\(\Rightarrow4a+2b=7\)\(\Rightarrow2\left(2a+b\right)=7\)\(\Rightarrow2a+b=3,5\)\(\Rightarrow a+\left(a+b\right)=3,5\)\(\Rightarrow a+1=3,5\)\(\Rightarrow a=2,5\)
Lại có: \(a+b=1\)\(\Rightarrow2,5+b=1\)\(\Rightarrow b=1-2,5=-1,5\)
Ta có: \(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=2,5.4+\left(-1.5\right).\left(-2\right)+1=10+3+1=14\)
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
A=−x2−2x+3A=−x2−2x−1+4A=−(x2+2x+1)+4A=−(x+1)2+4Do(x+1)2≥0∀x⇒−(x+1)2≤0∀x⇒A=−(x+1)2+4≤4∀xDấu “=” xảy ra khi: (x+1)2=0x+1=0⇔x=−1VậyA(Max)=4 khi x=−1A=−x2−2x+3A=−x2−2x−1+4A=−(x2+2x+1)+4A=−(x+1)2+4Do(x+1)2≥0∀x⇒−(x+1)2≤0∀x⇒A=−(x+1)2+4≤4∀xDấu “=” xảy ra khi: (x+1)2=0x+1=0⇔x=−1VậyA(Max)=4 khi x=−1
B=−x2+4x−7B=−x2+4x−4−3B=−(x2−4x+4)−3B=−(x−2)2−3Do (x−2)2≥0∀x⇒−(x−2)2≤0∀x⇒B=−(x−2)2−3≤−3∀xDấu “=” xảy ra khi: (x−2)2=0⇔x−2=0⇔x=2Vậy B(Max)=−3 khi x=2
A=−x2−2x+3A=−x2−2x−1+4A=−(x2+2x+1)+4A=−(x+1)2+4Do(x+1)2≥0∀x⇒−(x+1)2≤0∀x⇒A=−(x+1)2+4≤4∀xDấu “=” xảy ra khi: (x+1)2=0x+1=0⇔x=−1VậyA(Max)=4 khi x=−1