K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)

\(Q=2x-2-3x^2\\ Q=-3\left(x-\dfrac{1}{3}\right)^2+\dfrac{3.\left(-3\right)\left(-2\right)-2^2}{4.\left(-3\right)}\\ Q=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{14}{12}\le-\dfrac{14}{12}\)

đẳng thức xảy ra khi x=1/3

vậy MAX Q=-14/12 tại x=1/3

c)

\(S=-x^2+4x-9\\ S=-\left(x^2-4x+4\right)-5\\ S=-\left(x-2\right)^2-5\le-5\)

đẳng thức xảy ra khi x=2

vậy MAX S=-5 tại x=2

9 tháng 9 2018

\(P=3-4x-x^2=-\left(x^2+4x+4\right)+7\)

\(P=-\left(x+2\right)^2+7\)

\(Do-\left(x+2\right)^2\le0\Leftrightarrow P\le7\)

Dấu "=" xảy ra khi  x + 2 =0

    => x = -2 

Vậy Max P = 7 khi x = - 2

11 tháng 9 2018

giúp mình câu 2 điii

9 tháng 9 2019

a) P = 3 - 4x - x2

= -x2 - 4x + 3

= -(x2 + 4x + 4 - 4) + 3

= -(x + 2)2 + 7

Ta có: -(x + 2)2 ≤ 0 với ∀x

Nên: -(x + 2)2 + 7 ≤ 7 với ∀x

Dấu "=" xảy ra ⇔ -(x + 2)2 = 0

x + 2 = 0

x = -2

Vậy GTLN của biểu thức P là 7 khi x = -2

d) S = -x2 + 4x - 9

= -(x2 - 4x + 4 - 4) - 9

-(x - 2)2 - 5

Ta có: -(x - 2)2 ≤ 0 với ∀x

Nên: -(x - 2)2 - 5 ≤ -5 với ∀x

Dấu "=" xảy ra ⇔ -(x - 2)2 = 0

x - 2 = 0

x = 2

Vậy GTLN của biểu thức S là -5 khi x = 2

7 tháng 9 2019

c) 8x3 - 12x^2 + 6x - 1 = 0

⇔ ( 2x - 1 )\(^3\) = 0

⇔ 2x - 1 = 0

⇔ x = \(\frac{1}{2}\)

e) x^3 + 5x^2 + 9x = -45

⇔ x\(^3\) + 5x\(^2\) + 9x + 45 =0

⇔ x\(^2\) ( x + 5 ) + 9( x + 5 ) = 0

⇔ ( x\(^2\) + 9 ) ( x + 5 ) = 0

⇔( x + 3 ) ( x - 3 ) ( x + 5 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-5\end{matrix}\right.\)

g) x^2 + 16 = 10x

⇔ x\(^2\) - 10x + 16 = 0

⇔ x\(^2\) - 8x - 2x + 16 = 0

⇔ x( x - 8 ) - 2 ( x - 8 ) = 0

⇔ ( x - 2 ) ( x - 8 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=8\end{matrix}\right.\)

25 tháng 7 2015

\(A\left(x\right)=-\left(x^2-\frac{5}{3}x\right)+1=-3\left(x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2\right)+1+3.\left(\frac{5}{6}\right)^2\)

\(=-3\left(x-\frac{5}{6}\right)^2+\frac{37}{12}\le\frac{37}{12}\)

Dấu "=" xảy ra khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Vậy GTLN của A là 37/12.

b, c làm tương tự.

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )

5 tháng 7 2017

https://olm.vn/hoi-dapDễ z mà ko bít ..