Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vào link này tham khảo nha http://olm.vn/hoi-dap/question/461515.html
Quan trọng là dự đoán:D
Dự đoán Max =70 khi (x;y) =(-8;0)
Ta có: \(70-P=\frac{6\left(x+y+8\right)^2+17y^2}{11}\ge0\)
Hoặc một phân tích khác:\(70-P=\frac{\left(6x+23y+48\right)^2+102\left(x+8\right)^2}{253}\ge0\)
\(B=x^2+2y^2-2xy+2x-10y+2028\\ =x^2+y^2+1-2xy+2x-2y+y^2-8y+16+2011\\ =\left(x-y+1\right)^2+\left(y-4\right)^2+2011\ge2011\)
vì \(\left(x-y+1\right)^2\ge0;\left(y-4\right)^2\ge0\)
min B = 2011 khi \(\left\{{}\begin{matrix}y-4=0\\x-y+1=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)
\(1=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\sqrt{3}\)
\(P=\sum\frac{1}{\sqrt{\left(2x+y\right)^2+\left(x-y\right)^2}}\le\sum\frac{1}{\sqrt{\left(2x+y\right)^2}}=\sum\frac{1}{2x+y}\)
\(P\le\sum\left(\frac{1}{x+x+y}\right)\le\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{\sqrt{3}}{3}\)
\(\Rightarrow P_{max}=\frac{\sqrt{3}}{3}\) khi \(x=y=z=\sqrt{3}\)
Tớ kh biết vì mới có lớp 7 thui
Vậy tại sao lại còn bình luận? Hỏi mn chứ có hỏi riêng em đâu? Lại còn xưng là tớ?! :))))