Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhờ casio và 1 số suy đoán ta biết được max f(x) =7 khi x=0 ,giờ AM-GM ngược thôi :v
ta có: \(f\left(x\right)=\sqrt{\left(2x+3\right)\left(x+3\right)}+\sqrt{4\left(x+4\right)}-2x\)
Áp dụng bất đẳng thức cauchy :
\(\sqrt{\left(2x+3\right)\left(x+3\right)}\le\frac{1}{2}\left(3x+6\right)\)
\(\sqrt{4\left(x+4\right)}\le\frac{1}{2}\left(x+8\right)\)
\(\Rightarrow f\left(x\right)\le\frac{1}{2}\left(4x+14\right)-2x=2x+7-2x=7\)
đẳng thức xảy ra khi \(\hept{\begin{cases}2x+3=x+3\\4=x+4\end{cases}\Leftrightarrow x=0}\)
Còn ý liền trước nó nữa:
Tìm tất cả các cặp số (x, y) thỏa mãn \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)
LÀM GIÚP MK CÂU TÌM GTLN NHA
HELP ME, PLEASE!
\(\left(1\right)< =>-3\left(x-1\right)\left(x+1\right)\left(3x^2-8x-4\right)=0=>\orbr{\begin{cases}x=1\\x=\frac{4-2\sqrt{7}}{3};\frac{4+2\sqrt{7}}{3}\end{cases}.}\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2