\(B=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

@Cool Kid:\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)Hay một BĐT mạnh (và đẹp:v) hơn là: \(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)Ta cần chứng...
Đọc tiếp

@Cool Kid:

\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)

Hay một BĐT mạnh (và đẹp:v) hơn là: 

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)

Ta cần chứng minh: \(VT-VP=\Sigma\frac{\left(a+b-c\right)^2\left(a-b\right)^2}{2\left(a+b\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Giả sử \(a\ge c\ge b\) và đặt \(a=b+u+v,c=b+v\)

Bất đẳng thức này đúng theo Cauchy-Schwawrz:

\(VT-VP\ge\frac{4\left(c+a-b\right)^2\left(c-a\right)^2}{4\left(a+b+c\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Last inequality is: https://imgur.com/tRsHOfr (mình không gửi ảnh được nên gửi link vậy!)

Done!

0
9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

30 tháng 8 2019

Cô-si ngược dấu thôi~~

Ta có:\(\sqrt{12a+\left(b-c\right)^2}=\frac{1}{\sqrt{12}}\cdot\sqrt{12\left[12a+\left(b-c\right)^2\right]}\)

\(\le\frac{1}{\sqrt{12}}\cdot\frac{12+12a+\left(b-c\right)^2}{2}\)

Tương tự ta có:
\(K\le\frac{1}{\sqrt{12}}\left(\frac{12+12a+\left(b-c\right)^2}{2}+\frac{12+12b+\left(a-c\right)^2}{2}+\frac{12+12c+\left(a-b\right)^2}{2}\right)\)

\(=\frac{1}{\sqrt{12}}\cdot\frac{36+12\left(a+b+c\right)+2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)}{2}\)

Ta có:\(a^2+b^2+c^2\ge ab+bc+ca\) ( tự cm )

\(\Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Rightarrow K\le\frac{1}{\sqrt{12}}\cdot36=6\sqrt{3}\)

P/S:Em ko chắc đâu ạ.sợ bị ngược dấu lắm.Nhất là đoạn cuối:((( 

8 tháng 11 2019

\(\sqrt{12a+\left(b-c\right)^2}\le\sqrt{12a+\left(b+c\right)^2}=\sqrt{12a+\left(3-a\right)^2}=a+3\)

:) 

17 tháng 7 2020

Đề lạ đời, sao lại tìm các số thực dương a,b,c, đáng lẽ phải là cho các số thực dương a,b,c chứ. Mà đã thực dương rồi sao \(c\ge0\)(c = 0 đâu có nghĩa là c dương)

Mình nghĩ đề đúng phải là: Cho các số thực dương a, b, c thỏa mãn \(c\ge a\)(vì sau khi suy nghĩ và viết lại BĐT thì khi ta nhân hai phân số \(\frac{b}{a}.\frac{c}{b}=\frac{c}{a}\ge1\), cũng có thể đấy chứ) . CMR:...

17 tháng 7 2020

Bất đẳng thức đã cho tương đương với \(\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)^2}+\frac{4}{\left(1+\frac{a}{c}\right)^2}\ge\frac{3}{2}\)

Đặt \(\frac{b}{a}=x,\frac{c}{b}=y\left(x,y>0\right)\). Khi đó \(\frac{a}{c}=\frac{1}{xy}\). Bất đẳng thức cần chứng minh trở thành \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Trước hết ta chứng minh bất đẳng thức \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{xy+1}\)(*) với x, y là các số dương 

Thật vậy: (*)\(\Leftrightarrow\left(1-xy\right)^2+xy\left(x-y\right)^2\ge0\)*đúng*

Ta quy bài toán về chứng minh \(\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Đặt \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\). Áp dụng bất đẳng thức Cauchy ta được:\(\frac{4x^2y^2}{\left(1+xy\right)^2}+1\ge\frac{4xy}{1+xy}\)

Khi đó \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}+1-1\ge\frac{1}{xy+1}+\frac{4xy}{1+xy}-1\)\(=\frac{3xy}{1+xy}=\frac{3}{\frac{1}{xy}+1}\)(1)

Từ giả thiết \(c\ge a\)suy ra \(\frac{a}{c}\le1\)hay \(\frac{1}{xy}\le1\)(2)

Từ (1) và (2) suy ra \(\frac{3}{\frac{1}{xy}+1}\ge\frac{3}{1+1}=\frac{3}{2}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c

14 tháng 1 2018

bạn hỏi cái j z

AH
Akai Haruma
Giáo viên
15 tháng 8 2018

Lời giải:

Áp dụng BĐT Cô-si cho các số dương ta có:

\((a+b)+(b+c)+(c+a)\geq 3\sqrt[3]{(a+b)(b+c)(c+a)}\)

\(\Leftrightarrow 2(a+b+c)\geq 3\sqrt[3]{(a+b)(b+c)(c+a)}\)

\(\Rightarrow a+b+c\ge \frac{3}{2}\sqrt[3]{(a+b)(b+c)(c+a)}\)

Ta có đpcm.

Dấu "=" xảy ra khi $a+b=b+c=c+a$ hay $a=b=c$

11 tháng 5 2017

Theo BĐT AM-GM ta có:

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Rightarrow\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\ge\left(a+b+c\right)^2\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Rightarrow\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge\left(a+b+c\right)^2\left(1\right)\)

Do 2 BĐT trên cùng có dấu "=" khi \(a=b=c\)

Dễ dàng theo Cauchy-Schwarz ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\left(2\right)\). Giờ cần c/m

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Nên cũng chỉ cần chỉ ra

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (cmt)

\(\Rightarrow\)\(\left(a+b+c\right)^2\)\(\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

Dễ thấy \(a+b+c\ne0\) suy ra \(a+b+c\ge\)\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

BĐT cuối đúng theo AM-GM (cmt) \((3)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\) ta có ĐPCM

P/s:bài này liếc phát ra luôn mà quanh đi quẩn lại chỉ mấy BĐT cơ bản :D

11 tháng 5 2017

C/m lại phần đầu

Cần c/m \((a^2+b^2+c^2)(ab+ac+bc)+\sum_{cyc}(a^2-b^2)^2\geq(a^2+b^2+c^2)^2\)

\(\Leftrightarrow \sum_{cyc}(a^4+a^3b+a^3c-4a^2b^2+a^2bc)\geq0\)

\(\Leftrightarrow \sum_{cyc}(a^4-a^3b-a^3c+a^2bc)+2\sum_{cyc}ab(a-b)^2\geq0\)

Đúng theo Schur