Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)
\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)
\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)
\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)
\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)
\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)
Để A đạt GTLN thì x2+3x+3 bé nhất
mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)
Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)
lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)
Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)
\(\left(2x-1\right)^2+3\ge3\Rightarrow A=\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\)
\(\text{Dấu = xảy ra khi }2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(\text{Vậy Max}A=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)
- GIẢI :
Ta có : \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow(2x-1)^2+3\ge3\)
\(\Rightarrow\frac{1}{\left(2x-1\right)^2+3}\le\frac{1}{3}\)
\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\)
\(\Rightarrow\text{A}_{max}=\frac{5}{3}\).
Dấu "=" xảy ra khi : \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).
Vậy \(\text{A}_{max}=\frac{5}{3}\) khi \(x=\frac{1}{2}\).
\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)
dau '=' xay ra khi \(x=\frac{3}{2}\)
\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)
dau '=' xay ra khi \(x=1\)
Huỳnh Thoại m ghi thế bố t cx chả hỉu k it lm ns luôn đi lại còn bày đặt giỏi đã ngu còn tỏ ra ngu hơn
\(A=\frac{3}{2x^2+2x+3}=\frac{3}{2x^2+2x+\frac{1}{2}+\frac{5}{2}}\)
\(=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Nên GTLN của A là \(\frac{6}{5}\) khi \(x=-\frac{1}{2}\)
Ta có: \(A=\frac{3}{2x^2+2x+3}\)
\(A=\frac{3}{2x^2+2x+\frac{1}{2}+\frac{5}{2}}\)
\(A=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}\)
\(A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}\)
\(A=\frac{6}{5}\)
Nên GTLN của A là \(\frac{6}{5}\) khi \(x=-\frac{1}{2}\)