K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

\(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1\ge1\)

\(\Rightarrow\sqrt{x^2-2x+2}\ge1\)

\(\Rightarrow2+\sqrt{x^2-2x+2}\ge2+1=3\)

\(\Rightarrow\frac{3}{2+\sqrt{x^2-2x+2}}\le\frac{3}{3}\)

\(\Rightarrow\frac{-3}{2+\sqrt{x^2-2x+2}}\ge\frac{-3}{3}=-1\)

vậy Amin = -1 khi x=1

Không có giá trị lớn nhất bạn nhé, hoặc là viết nhầm biểu thức hoặc nhầm câu hỏi. Chúc bạn may mắn.

3 tháng 6 2017

Vì \(x^2-2x+2=\left(x-1\right)^2+1\ge1\)nên ta có :

 \(\Leftrightarrow\sqrt{\left(x-1\right)^2+1}\ge1\)

\(\Leftrightarrow2+\sqrt{x^2-2x+2}\ge3\)

\(\Leftrightarrow-\frac{3}{2+\sqrt{x^2-2x+2}}\le-\frac{3}{3}=-1\)

\(\Rightarrow A_{Max}=-1\)

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

27 tháng 10 2021

a) ĐK : \(x\ge0\)

A = \(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{1}{x-\sqrt{x}+1}\)

\(=\frac{x-\sqrt{x}+1-3+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\cdot\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

b) \(A=\frac{\sqrt{x}}{x-\sqrt{x}+1}=\frac{x-\sqrt{x}+1-x+2\sqrt{x}-1}{x-\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le1\)

=> Max A = 1

Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\)<=> x = 1

Vậy Max A = 1 <=> x = 1

27 tháng 10 2021

x = 1 nha

NM
23 tháng 8 2021

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

26 tháng 5 2019

\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)

\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)

...