Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa chút đề nhé!
Với x khác -5/3
A= (3x^3+5x^2-9x-15):(3x+5)
= [x^2(3x+5)-3(3x+5)]:(3x+5)
=(x^2-3) (3x+5):(3x+5)
=x^2-3\(\ge-3\)
Dấu '=' xảy ra khi x=0
max A=-3 khi x=0
Đặt A=-9x2+5x+1=-(9x2-5x-1)=-[(9x2-2.3.5/6.x+25/36)-1-25/36]=-61/36-(3x-5/6)2
A<=-61/36. Vậy Amax=-61/36 khi 3x-5/6=0 hay x=5/18.
Tính GTLN của biểu thức:
1. A= 2x - x^2
2. B= 19 - 6x - 9x^2
3. D= -3x^2 + 2x - 1
4. E= -1/3x^2 + 2x - 5
a: \(A=-4x^2+4x-1\)
\(=-\left(4x^2-4x+1\right)\)
\(=-\left(2x-1\right)^2\le0\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
b: \(B=-x^2+5x\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a) Đặt \(A=-x^2+9x-12\)
\(-A=x^2-9x+12\)
\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)
\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)
Mà \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
Vậy \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)
b) Đặt \(B=2x^2+10x-1\)
\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)
\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)
Mà \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge-\frac{29}{4}\)
Dấu "=" xảy ra khi : \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)
c) Đặt \(C=\left(2x+6\right)\left(x-1\right)\)
\(C=2x^2-2x+6x-6\)
\(C=2x^2+4x-6\)
\(C=2\left(x^2+2x+1\right)-8\)
\(C=2\left(x+1\right)^2-8\)
Mà \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow C\ge-8\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(C_{Min}=-8\Leftrightarrow x=-1\)
d) Đặt \(D=3x-2x^2\)
\(-2D=4x^2-6x\)
\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)
\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-2D\ge-\frac{9}{4}\)
\(\Leftrightarrow D\le\frac{9}{8}\)
Dấu "=" xảy ra khi : \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)
Giải:
5) \(-x^2+x-\dfrac{1}{2}\)
\(=-x^2+x-\dfrac{1}{4}+\dfrac{3}{4}\)
\(=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\le\dfrac{3}{4}\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
6) \(-\dfrac{1}{4}x^2+x-2\)
\(=-\dfrac{1}{4}x^2+x-1-1\)
\(=-\left(\dfrac{1}{4}x^2-x+1\right)-1\)
\(=-\left(\dfrac{1}{2}x-1\right)^2-1\le-1\)
\(\Leftrightarrow\dfrac{1}{2}x-1=0\Leftrightarrow x=2\)
Vậy ...
7) \(-\dfrac{1}{9}x^2-\dfrac{1}{3}x+1\)
\(=-\dfrac{1}{9}x^2-\dfrac{1}{3}x-\dfrac{1}{4}+\dfrac{5}{4}\)
\(=-\left(\dfrac{1}{9}x^2+\dfrac{1}{3}x+\dfrac{1}{4}\right)+\dfrac{5}{4}\)
\(=-\left(\dfrac{1}{3}x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{3}x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy ...
8) \(-2x^2+2xy-2y^2+2x+2y-8\)
\(=-x^2+2xy-y^2+2x-x^2+2y-y^2-1-1-6\)
\(=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-6\)
\(=-\left(x-y\right)^2-\left(x-1\right)^2-\left(y-1\right)^2-6\le-6\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Vậy ...
bài 2:
a)\(A=16x^2-8x+3\)
\(=\left[\left(4x\right)^2-2.4x.1+1^2\right]-1+3\)
\(=\left(4x-1\right)^2+2\)
ta thấy: \(\left(4x-1\right)^2\ge0\)
\(\left(4x-1\right)^2+2\ge2\)
vậy GTNN của A là 2 khi \(x=\dfrac{1}{4}\)
b) \(B=19-6x-9x^2\)
\(=-\left[\left(3x\right)^2+2.3x.1+1^2\right]+19\)
\(=-\left(3x-1\right)^2+19\)
ta thấy: \(-\left(3x-1\right)^2\le0\)
\(-\left(3x-1\right)^2+19\le19\)
vậy GTLN của B là 19 khi \(x=\dfrac{1}{3}\)
`I=3x-9x^{2}-1`
`I=-(9x^2-3x+1)`
`I=-(9x^2-3x+1/4+3/4)`
`I=-(3x-1/2)^{2}-3/4`
Vì `-(3x-1/2)^2 <= 0` với mọi `x`
`=>-(3x-1/2)^2-3/4 <= -3/4` với mọi `x`
Hay `I <= -3/4` với mọi `x`
`=>I_{mi n}=-3/4 <=>x=1/6`