Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Typo ? i think it \(A=\left(x+1000\right)^2+2y^2-8y\)
\(=\left(x+1000\right)^2+2y^2-8y+8-8\)
\(=\left(x+1000\right)^2+2\left(y^2-4y+4\right)-8\)
\(=\left(x+1000\right)^2+2\left(y-2\right)^2-8\)
Dễ thấy; \(\left(x+1000\right)^2\ge0;2\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x+1000\right)^2+2\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x+1000\right)^2+2\left(y-2\right)^2-8\ge-8\)
Xảy ra khi \(\left(x+1000\right)^2=0;2\left(y-2\right)^2=0\Rightarrow\hept{\begin{cases}x=-1000\\y=2\end{cases}}\)
2/ x+y=2 => y=2-x
\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)
\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)
=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2
1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)
Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)
Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
<=> x=1 hoặc x=1
Đkxđ : \(x+y\ne0\)
\(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)
\(\Rightarrow x-y=y\)
\(\Rightarrow x=2y\)
Thay x = 2y vào M có :
\(M=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Vậy ...
có dư dấu nào không bạn?
B = - x2 -y2 + 2x + 2y
B = -( x2 - 2x + 1) - ( y2 - 2y + 1) + 2
B = -( x - 1)2 - ( y - 1)2 + 2
Do : -( x - 1)2 nhỏ hơn hoặc bằng 0 với mọi x
Suy ra : -( x - 1)2 + 2 nhỏ hơn hoặc bằng 2 với mọi x
Do : - ( y - 1)2 nhỏ hơn hoặc bằng 0 với mọi x
Suy ra : - ( y - 1)2 + 2 nhỏ hơn hoặc bằng 2 với mọi x
Vậy , Bmax = 2 khi và chỉ khi : x - 1 = 0 -> x = 1
y - 1 = 0 -> y = 1