K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

c)C=\(\dfrac{x^2+8}{x^2+2}=\dfrac{\left(x^2+2\right)+6}{x^2+2}=1+\dfrac{6}{x^2+2}\)

Để C đạt GTLN thì \(\dfrac{6}{x^2+2}\) đạt GTNN

\(x^2\ge0\Rightarrow x^2+2\ge2\)

Max C=4 khi x=0

9 tháng 1 2018

a)A= 5-3.\(\left(2x-1\right)^2\)

\(\left(2x-1\right)^2\)\(\ge0\) nên 3.\(\left(2x-1\right)^2\)\(\ge0\)

Max A=5 khi x=\(\dfrac{1}{2}\)

b) Để B=\(\dfrac{1}{2.\left(x-1\right)^2+3}\)đạt GTLN thì \(2.\left(x-1\right)^2+3\) đạt GTNN

\(\left(x-1\right)^2\ge0\Rightarrow2.\left(x-1\right)^2\ge0\Rightarrow2.\left(x-1\right)^2+3\ge3\)

Max B=\(\dfrac{1}{3}\)khi x=1

câu c thiếu đề phải ko bạn

11 tháng 7 2017

a, Với mọi giá trị của x;y ta có:

\(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)

Hay \(C\ge-10\)với mọi giá trị của x;y

Để \(C=-10\) thì \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10=-10\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy................

b, Với mọi giá trị của x ta có:

\(\left(2x-1\right)^2+3\ge3\Rightarrow\dfrac{5}{\left(2x-1\right)^2+3}\ge\dfrac{5}{3}\)

Hay \(D\ge\dfrac{5}{3}\) với mọi giá trị của x.

Để \(D=\dfrac{5}{3}\) thì \(\dfrac{5}{\left(2x-1\right)^2+3}=\dfrac{5}{3}\)

\(\Rightarrow\left(2x-1\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

Vậy..................

Chúc bạn học tốt!!!

11 tháng 7 2017

\(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\)

\(\left(x+1\right)^2\ge0;\left(y-\dfrac{1}{3}\right)^2\ge0\)

\(C_{MIN}\Rightarrow\left(x+1\right)^2_{MIN};\left(y-\dfrac{1}{3}\right)^2_{MIN}\)

\(\left(x+1\right)^2_{MIN}=0;\left(y-\dfrac{1}{3}\right)^2_{MIN}=0\)

\(\Rightarrow C_{MIN}=0+0-10=-10\)

\(D=\dfrac{5}{\left(2x-1\right)^2+3}\)

\(D_{MAX}\Rightarrow\left(2x-1\right)^2+3_{MIN}\)

\(\left(2x-1\right)^2\ge0\)

\(\left(2x-1\right)^2+3_{MIN}\Rightarrow\left(2x-1\right)^2_{MIN}=0\)

\(\Rightarrow\left(2x-1\right)^2+3_{MIN}=0+3=3\)

\(\Rightarrow D_{MAX}=\dfrac{5}{3}\)

25 tháng 10 2019

\(a,A=5-3\left(2x-1\right)^2\le5\left(vì3\left(2x-1\right)^2\ge0\forall xnên-3\left(2x-1\right)^2\le0\right)\\ Dấu"="xảyrakhi:\\ 3\left(2x-1\right)^2=0\\ \Leftrightarrow x=\frac{1}{2}\\ Vậy.....\)

b,

\(B=\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{0+3}=\frac{1}{3}\left(vì2\left(x-1\right)^2\ge0\forall x\right)\\ Dấu"="xảyrakhi:\\ 2\left(x-1\right)^2=0\\ \Leftrightarrow x=1\\ Vậy...\)

c,

\(C=\frac{x^2+8}{x^2+2}=1+\frac{6}{x^2+2}\le1+\frac{6}{0+2}=4\left(vìx^2\ge0\forall x\right)\\ Dấu"="xảyrakhi:\\ x^2=0\Leftrightarrow x=0\\ Vậy......\)

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )

9 tháng 1 2018

a) \(A=5-3.\left(3x-1\right)^2=-\left[3\left(3x-1\right)^2-5\right]\)

Ta có: \(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow3.\left(3x-1\right)^2\ge0\)

\(\Rightarrow3\left(3x-1\right)^2-5\ge-5\forall x\)

\(\Rightarrow-\left[3\left(3x-1\right)^2-5\right]\ge5\forall x\)

Vậy \(MinA=5\Leftrightarrow x=\dfrac{1}{3}\)

28 tháng 11 2017

a) C = 20013 - |52x|

do \(-\left|5-2x\right|\le0\forall x\)

=> 20013-\(\left|5-2x\right|\le20013\)

=>A≤20013

=> GTLN C =20013 khi 5-2x=0

=> 2x=5

=> x=\(\dfrac{5}{2}\)

vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)

b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)

do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)

=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)

=> D≤7

=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)

=> x=-\(\dfrac{8}{3}\)

17 tháng 3 2017

Bài 1:

\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(=2007.\dfrac{1}{90}-3\)

\(=19,3\)

Vậy S = 19,3

17 tháng 3 2017

5b)\(S=1+3+3^2+...+3^{2013}\)

\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)

\(\Rightarrow3S-S=3^{2014}-1\)

\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

a)

\(3(2x-\frac{1}{2})+2(\frac{3}{8}-x)=2,75\)

\(\Leftrightarrow 6x-\frac{3}{2}+\frac{3}{4}-2x=2,75\)

\(\Leftrightarrow 4x=\frac{7}{2}\Rightarrow x=\frac{7}{8}\)

b)

\(x-\frac{1}{3}(5-3x)=1\frac{1}{2}x+5\frac{1}{2}\)

\(\Leftrightarrow x-\frac{5}{3}+x=x+\frac{1}{2}x+\frac{11}{2}\)

\(\Leftrightarrow \frac{1}{2}x=\frac{43}{6}\) \(\Rightarrow x=\frac{43}{3}\)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

c) \(\sqrt{x-1}=4\Rightarrow x-1=4^2\Rightarrow x=4^2+1=17\)

d)

\(|x|-5\frac{3}{7}|-x|-\frac{3}{4}=2|x|-1\frac{1}{7}\)

\(\Leftrightarrow |x|-\frac{38}{7}|x|-\frac{3}{4}=2|x|-\frac{8}{7}\)

\(\Leftrightarrow |x|(1-\frac{38}{7}-2)=\frac{3}{4}-\frac{8}{7}\)

\(\Leftrightarrow |x|.\frac{-45}{7}=\frac{-11}{28}\)

\(\Leftrightarrow |x|=\frac{11}{180}\Rightarrow \left[\begin{matrix} x=\frac{11}{180}\\ x=-\frac{11}{180}\end{matrix}\right.\)

23 tháng 9 2017

a.\(3^{x-1}=243\)

\(3^x:3^1=243\)

\(3^x=729\)

\(\Leftrightarrow3^6=729\)

\(\Leftrightarrow x=6\)

b.\(\left(\dfrac{2}{3}\right)^{x+1}=\dfrac{8}{4}\)

\(\left(\dfrac{2}{3}\right)^x.\left(\dfrac{2}{3}\right)=\dfrac{8}{4}\)

\(\left(\dfrac{2}{3}\right)^x=3\)

Câu b tính đến đây rồi không mò đc x nữa.

27 tháng 2 2018

a) (x+2)2+\(\left(y-\dfrac{1}{5}\right)^2-10\ge-10\)

Dau = xay ra khi : \(\left\{{}\begin{matrix}x+2=0\\y-\dfrac{1}{5}=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-2\\y=\dfrac{1}{5}\end{matrix}\right.\)

Vay GTNN cua A=-10 khi : x=-2 , y=1/5

b) ta co : (2x-3)2+5≥5

=> B=\(\dfrac{4}{\left(2x-3\right)^2+5}\le\dfrac{4}{5}\)

Dau = xay ra khi : 2x-3=0

=> x=3/2

Vậy GTLN của B=4/5 khí x=3/2

27 tháng 2 2018

mk giúp bn bài này lunvui

Giải :

1, Ta có: (x + 2)2 ≥ 0 ∀ x, \(\left(y-\dfrac{1}{5}\right)^2\) ≥ 0 ∀ y

=> (x + 2)2 + \(\left(y-\dfrac{1}{5}\right)^2\) ≥ 0

=> (x + 2)2 + \(\left(y-\dfrac{1}{5}\right)^2\) - 10 ≥ 0 + (-10) = -10

=> A ≥ -10

Dấu "=" xảy ra khi (x + 2)2 = 0 và \(\left(y-\dfrac{1}{5}\right)^2\)= 0

=> x + 2 = 0 và \(y-\dfrac{1}{5}\) = 0

=> x = -2 và y = \(\dfrac{1}{5}\)

Vậy min A =10 khi x = -2 ; y = \(\dfrac{1}{5}\)

b, Ta có: ( 2x - 3)2 ≥ 0 ∀ x

=> ( 2x - 3)2 +5 ≥ 0 + 5 = 5

=> B ≤ \(\dfrac{4}{5}\)

Dấu " = " xảy ra khi (2x - 3)2 = 0 => 2x- 3 = 0

=> x = \(\dfrac{3}{2}\)

Vậy max A = \(\dfrac{4}{5}\) tại x = \(\dfrac{3}{2}\)