Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Côsi:
\(x+1=\left(x-2006\right)+2007\ge2\sqrt{2007}.\sqrt{x-2006}\)
\(x-1=\left(x-2007\right)+2006\ge2\sqrt{2006}.\sqrt{x-2007}\)
\(A\le\frac{1}{2\sqrt{2007}}+\frac{1}{2\sqrt{2006}}\)
Dấu bằng: \(\hept{\begin{cases}x-2006=2007\\x-2007=2006\end{cases}\Leftrightarrow x=2006+2007=4013}\)
a/ Ta có
P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)
= \(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
\(x\ge2017\)
\(A=\frac{\sqrt{x-2016}}{x-2016+2017}+\frac{\sqrt{x-2017}}{x-2017+2016}=\frac{1}{\sqrt{x-2016}+\frac{2017}{\sqrt{x-2016}}}+\frac{1}{\sqrt{x-2017}+\frac{2016}{\sqrt{x-2017}}}\)
\(A\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-2016=2017\\x-2017=2016\end{matrix}\right.\) \(\Rightarrow x=4033\)