Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+a^2bc+abc^2\right)\)\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(vì a+b+c=0)
b) \(a+b+c=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\left(theoa\right)\)
A = x2 + 3x + 7
= x2 + 2 . x . 3/2 + 9/4 + 19/4
= (x + 3/2)2 + 19/4
(x + 3/2)2 lớn hơn hoặc bằng 0
(x + 3/2)2 + 19/4 lớn hơn hoặc bằng 19/4
Vậy Min A = 19/4 khi x = - /32
***
B = x(x - 6)
= x2 - 6x
= x2 - 2 . x . 3 + 9 - 9
= (x - 3)2 - 9
(x - 3)2 lớn hơn hoặc bằng 0
(x - 3)2 - 9 lớn hơn hoặc bằng - 9
Vậy Min B = - 9 khi x = 3
***
C = (x - 2)(x - 5)(x 2 - 7x - 10)
= (x2 - 7x + 10)(x2 - 7x - 10)
= (x2 - 7x)2 - 100
(x2 - 7x)2 lớn hơn hoặc bằng 0
(x2 - 7x)2 - 100 lớn hơn hoặc bằng - 100
Vậy Min C = - 100 khi x = 7
A = 11 - 10x - x2
= - (x2 + 2 . x . 5 + 25 - 36)
= -[(x + 5)2 - 36]
(x + 5)2 lớn hơn hoặc bằng 0
(x + 5)2 - 36 lớn hơn hoặc bằng - 36
- [(x + 5)2 - 36] nhỏ hơn hoặc bằng 36
Vậy Max A = 36 khi x= - 5
B = |x - 4|(2 - |x - 4|)
Đặt |x - 4| = t, ta có:
B = t(2 - t)
= - (t2 - 2 . t . 1 + 1 - 1)
= - [(t - 1)2 - 1]
= - [(|x - 4| - 1)2 - 1]
(|x - 4| - 1)2 lớn hơn hoặc bằng 0
(|x - 4| - 1)2 - 1 lớn hơn hoặc bằng - 1
- [(|x - 4| - 1)2 - 1] nhỏ hơn hoặc bằng 1
Vậy Max B = 1 khi x = 5 hoặc x = 3
a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)
\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)
\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{a-b}{b+c}\)
\(x^4+y^4+\left(x+y\right)^4=2\left(x^4+y^4+2x^3y+3x^2y^2+2xy^3\right)\)
\(=2\left(\left(x^4+y^4+2x^2y^2\right)+\left(2x^3y+2xy^3\right)+x^2y^2\right)\)
\(=2\left(\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right)\)
\(=2\left(x^2+y^2+xy\right)^2\)
Đặt x2 + xy + y2 = a2 ; x + y = b.Ta có :
a4 = (a2)2 = (x2 + xy + y2)2 = x4 + y4 + x2y2 + 2x3y + 2xy2 + 2x2y2 = x4 + y4 + x2y2 + 2xy(x2 + y2 + xy) = x4 + y4 + x2y2 + 2xya2 (1)
mà b = x + y
=> b2 = x2 + y2 + 2xy = a2 + xy => b4 = a4 + x2y2 + 2a2xy .Từ (1) và (2) ,ta có :
2a4 = x4 + y4 + a4 + x2y2 + 2xya2 = x4 + y4 + b4.Thay a2 = x2 + xy + y2 ; b = x + y,ta có đpcm
<=>
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)