Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5-x^2+2x-4y^2-4y\)
\(\Rightarrow-A=-5+x^2-2x+4y^2+4y\)
\(\Rightarrow-A=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)
\(\Rightarrow-A=\left(x-1\right)^2+\left(2y+1\right)^2-7\)
Vay \(A_{max}=7\Leftrightarrow x=1;y=-\frac{1}{2}\)
\(P=2x^2-\left(3-2x\right)^2\)
\(P=2x^2-9+12x-4x^2\)
\(P=-2x^2+12x-9\)
\(P=-2\left(x-3\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\Rightarrow y=-3\)
2x+y=3
=>y=3-2x
Suy ra: P=2x2-y2=2x2-(3-2x)2=2x2-9+12x-4x2=-2x2+12x-9=-2x2+12x-18+9
=-2.(x2-6x+9)+9
=-2.(x-3)2+9 < hoặc =9
Dấu "=" xảy ra khi: x=2 =>y=3-2.2=-1
Vậy GTNN của P là 9 tại x=2;y=-1
a
\(N=x-x^2\)
\(\Leftrightarrow-N=x^2-x\)
\(\Leftrightarrow-N+\frac{1}{4}=x^2-x+\frac{1}{4}\)
\(\Leftrightarrow-N+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
\(\Leftrightarrow-N=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow N_{max}=-\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
\(N=x-x^2\)
\(=-x^2+2.x.\frac{1}{2}-\frac{1}{4}+\frac{1}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le0+\frac{1}{4};\forall x\)
Hay \(N\le\frac{1}{4};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy MAX \(N=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
A=-(x2+2x-3)
A=-[(x)2+2(x)(1)+(1)2-1-3]
A=-[(x+1)2-4]
A=-(x-1)2-4
Ta có:\(\left(x-1\right)^2\ge0\forall x\)
\(\left(=\right)-\left(x-1\right)^2\le0\)
\(\left(=\right)-\left(x-1\right)^2-4\le-4\)
\(\left(=\right)A\le-4\)
Dấu"="xảy ra khi:
(x-1)2=0
(=)x-1=0
(=)x=1
Vậy GTLN của A là -4 khi x=1
Ta có: \(B=-\left(2x^2-5x+8\right)\)
\(\Rightarrow B=-\left[2x^2-2.2x.\frac{5}{4}+\left(\frac{5}{4}\right)^2\right]+\frac{27}{4}\)
\(\Rightarrow B=-\left(2x-\frac{5}{4}\right)^2+\frac{27}{4}\)
\(\Rightarrow B=27-\left(2x-\frac{5}{4}\right)^2\)
Vì \(\left(2x-\frac{5}{4}\right)^2\ge0\Rightarrow B\le\frac{27}{4}\)
Dấu "=" xảy ra khi \(2x-\frac{5}{4}=0\Rightarrow x=\frac{5}{8}\)
Vậy Bmax=\(\frac{27}{4}\) khi \(x=\frac{5}{8}\)
-B = 2x^2 - 5x + 8 = 2.(x^2 - 5/2 x + 25/16 ) + 39/8 = 2.(x-5/4)^2 + 39/8 >= 39/8
=> B <= -39/8
Dấu "=" xảy ra <=> x-5/4 = 0 <=> x=5/4
Vậy Max B = -39/8 <=> x=5/4