K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 3 2017

Lời giải:

Từ \(2x+xy=4\rightarrow y=\frac{4}{x}-2\) ( hiển nhiên \(x\neq 0\) )

Do đó mà

\(A=x^2y=x^2\left (\frac{4}{x}-2\right)=-2x^2+4x=-2(x^2-2x+1)+2\)

\(\Leftrightarrow A=-2(x-1)^2+2\leq 2\) do \(-(x-1)^2\leq 0\forall x\in\mathbb{R}\)

Vậy \(A_{\max}=2\Leftrightarrow (x,y)=(1,2)\)

4 tháng 2 2017

Ta có:

2x + xy = 4

<=> 2x2 + x2 y = 4x

<=> A = - 2x2 + 4x = 2 - (2x2 - 4x + 2) = 2 - 2(x - 1)2 \(\le\)2

Vậy GTLN là 2 đạt được khi x = 1

4 tháng 2 2017

Quên ghi y = 2

12 tháng 3 2017

Sử dụng Bdt thức   \(ab\le\left(\frac{a+b}{2}\right)^2\)  với  \(a,b>0\).

Tự chứng minh

\(------------------\)

Áp dụng bđt trên, ta có:

\(A=x^2y=\frac{1}{2}.2x.xy\le\frac{1}{2}\left(\frac{2x+xy}{2}\right)^2=\frac{1}{8}\left(2x+xy\right)^2=\frac{1}{8}.4^2=2\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(\hept{\begin{cases}2x=xy\\2x+xy=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)  

Kết luận: .....

2 tháng 2 2016

câu a) rút x theo y thế vào A rồi áp dụng HĐT

b)rút xy thế vào B 

c)HĐT

d)rút x theo y thé vào C

rồi dùng BĐT cô-si

e)BĐT chưa dấu giá trị tuyệt đối

 

1 tháng 3 2016

\(A=x^2y=x\left(4-2x\right)=4x-2x^2\)

\(A=-2x^2+4x=-2\left(x^2-2x+1\right)+2\)

\(A=-2\left(x-1\right)^2+2\) VẬY GIÁ TRỊ LỚN NHẤT LÀ BẰNG 2 KHI X=1 TỰ TÌM Y

30 tháng 9 2016

Áp dụng bđt \(\left(a+b\right)^2\ge4ab\) , ta có : 

\(16=\left(2x+xy\right)^2\ge4.2x.xy\Leftrightarrow8x^2y\le16\Leftrightarrow x^2y\le2\)

A đạt giá trị lớn nhất bằng 2 khi x = 1, y = 2

1 tháng 3 2020

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

1 tháng 3 2020

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.