\(\frac{2x+1}{4x^2+4x+17}\) với x>0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cách 2 

\(Pain=\left(\sqrt{2x+1}-\sqrt{\frac{16}{2x+1}}\right)^2\ge0\)

                \(=2x+1-\frac{16}{2x+1}-2\sqrt{\frac{\left(2x+1\right)16}{\left(2x+1\right)}}\ge0\)

                    \(=\frac{\left(2x+1\right)^2+16}{2x+1}\ge8\)

\(a=\frac{2x+1}{4x^2+4x+17}=\frac{2x+1}{\left(2x+1\right)^2+16}\ge\frac{1}{8}\)

\(4x^2A+4xa+17a=2x+1.\)

\(4x^2A+2x\left(2a-1\right)+\left(17a-1\right)=0\)

để pt có nghiệm thì  \(\Delta`=\left(2a-1\right)^2-4a\left(17a-1\right)\ge0\)

\(\Delta`=\left(1-8a\right)\left(8a+1\right)\ge0\)

\(1-8a\ge0\Leftrightarrow a\le\frac{1}{8}\) " max

\(8a+1\ge0\Leftrightarrow a\ge-\frac{1}{8}\) Min 

\(\frac{1}{8}\ge a\ge-\frac{1}{8}\)

tìm hộ lỗi sai :))  , chia sẻ luôn cách tìm min max pt dạng như trên

công thức tổng quát nè

\(M=\frac{ax^2+bx+C}{ex^2+fx+g}\)

\(ex^2M+fxM+gM=ax^2+bx+c\)

\(x^2\left(e-a\right)+x\left(fm-b\right)+\left(gm-c\right)=0\)

\(\Delta=\left(fm-b\right)^2-4\left(gm-c\right)\left(e-a\right)\ge0\)

pt bậc 2 ẩn M , tính denta ra nghiệm rồi phân thích thành nhân tử là ok

3 tháng 5 2020

Giúp mk vs các bn eii

3 tháng 5 2020

\(P=-\left(4x^2-4x+1+x+\frac{1}{4x}-2015\right)\)

\(=-\left[\left(2x-1\right)^2+\frac{\left(2x-1\right)^2}{4x}\right]+2014\)

\(P\le2014\forall x>0\)

Dấu "=" xảy ra <=> x=\(\frac{1}{2}\)

6 tháng 11 2016

Viết B dưới dạng \(8x+2+\frac{1}{2x}\). Hai số \(8x\)\(\frac{1}{2x}\) là hai số dương , có tích không đổi ( bằng 4 ) nên tổng của chúng nhỏ nhất khi và chỉ khi :

\(8x=\frac{1}{2x}\Leftrightarrow16x^2=1\Leftrightarrow x=\frac{1}{4}\left(x>0\right)\)

Vậy \(Min_B=\frac{1+1+1}{\frac{1}{2}}=6\Leftrightarrow x=\frac{1}{4}.\)

21 tháng 1 2018

super easy . tập làm đi cho não có nếp nhăn Giang ơi  :)

21 tháng 1 2018

Mik làm bài 3 nha

Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì

\(x^2-6x+17\)đạt GTNN

Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ

Suy ra \(x^2-6x+17\ge17\)

Suy ra \(x^2-6x+17\)đạt GTNN khi

\(x^2-6x+17=17\)

\(\Leftrightarrow x^2-6x=0\)

Dấu ''='' xảy ra khi:

\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Câu cuôi tương tự

27 tháng 12 2019

Violympic toán 8

27 tháng 12 2019

Băng Băng 2k6: P2 m làm là miền giá trị của lớp 9, lớp 8 chưa học Delta nên không dùng được nhé!

Đơn giản lắm!

Tìm min A:

\(A=\frac{4x+1}{4x^2+2}=\frac{\left(x+1\right)^2}{2x^2+1}-\frac{1}{2}\ge-\frac{1}{2}\)

Đẳng thức xảy ra khi \(x=-1\)

Tìm max A:

\(A=\frac{4x+1}{4x^2+2}=-\frac{\left(2x-1\right)^2}{2\left(2x^2+1\right)}+1\le1\)

Đẳng thức xảy ra khi \(x=\frac{1}{2}\)

Vậy....

----------------------------------------------------------------------------------------------------

Tìm min B:

\(B=\frac{4x+5}{x^2+2x+6}=\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}-\frac{4}{5}\ge-\frac{4}{5}\)

Đẳng thức xảy ra khi \(x=-\frac{7}{2}\)

Tìm max B:

\(B=\frac{4x+5}{x^2+2x+6}=-\frac{\left(x-1\right)^2}{x^2+2x+6}+1\le1\)

Đẳng thức xảy ra khi \(x=1\)

Vậy...

14 tháng 11 2017

a, N = 2 + 6/x^2-8x+22

Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3

Dấu "=" xảy ra <=> x-4 = 0 <=> x=4

Vậy Max N =3 <=> x=4

k mk nha

14 tháng 11 2017

Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !