\(\frac{3x^2-1+6x}{x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

\(A=\frac{3x^2+6x+10}{x^2+2x+3}=\frac{3x^2+6x+9}{x^2+2x+3}+\frac{1}{x^2+2x+3}\)

\(=3+\frac{1}{x^2+2x+3}=3+\frac{1}{\left(x+1\right)^2+2}\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu "=" xảy ra <=> x=-1

Vậy GTLN của A=7/2 khi x=-1

13 tháng 12 2017

Ta có: 

\(A=\frac{3x^2+6x+1}{x^2+2x+3}\)

   \(=\frac{3x^2+6x+9}{x^2+2x+3}+\frac{1}{x^2+2x+3}\)

   \(=\frac{3\left(x^2+2x+3\right)}{x^2+2x+3}+\frac{1}{x^2+2x+3}\)

    \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow\frac{1}{x^2+2x+3}\le\frac{1}{2}\)

\(\Rightarrow A\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi \(x^2+2x+3=2\Rightarrow x=-1\)

Vậy \(A_{Min}=\frac{7}{2}\Leftrightarrow x=-1\)

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

21 tháng 2 2020

a) A = \(\frac{3}{x^2+1}\)

Để A đạt GTLN thì x2 + 1 đạt GTNN

Mà x2 + 1 ≥ 1

⇒ MaxA = 3 ⇔ x2 + 1 = 1 ⇔ x2 = 0 ⇔ x = 0

Vậy Giá trị lớn nhất của A là 3 tại x = 0.

b) B = \(\frac{3x^2+6x+8}{x^2+2x+2}=\frac{x^2+2x+2+x^2+2x+2+x^2+2x+2+2}{x^2+2x+2}\)

\(=1+1+1+\frac{2}{x^2+2x+2}=3+\frac{2}{\left(x+1\right)^2+1}\)

Để B đạt GTLN thì (x + 1)2 + 1 đạt GTNN

Mà (x + 1)2 + 1 ≥ 1

⇒ MaxB = 5 ⇔ (x + 1)2 + 1 = 1 ⇔ (x + 1)2 = 0 ⇔ x = -1

Vậy giá trị lớn nhất của B là 5 tại x = -1.

\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)

Để A đạt GTLN thì x2+3x+3 bé nhất

mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)

Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)

lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)

Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)

23 tháng 6 2017

a, Để A đạt GTLN thì \(x^2-6x+1\) đạt GTNN.

\(x^2-2x3+3^2-8\)

\(\left(x-3\right)^2-8\ge-8\)

Dấu "=" xảy ra khi \(x-3=0\)\(\Rightarrow\)\(x=3\)

Vậy GTNN của \(x^2-6x+1\)là -8 khi x=3

Thay x = 3 vào biểu thức a ta được:

\(A=\frac{5}{9-18+1}=-\frac{5}{8}\)

Vậy GTLN của A là -5/8

7 tháng 8 2018

vì tử thức là 2 không đổi , để biểu thức A có giá trị khi mẫu thức : \(x^2-6x+1\)có GTLN                                                                     mà : \(x^2-6x+1=[(x^2+2x\frac{6}{2}+\frac{36}{4})-\frac{36}{4}+1]=[(x+\frac{6}{2})^2-8]\)                                                                                             =\(-8+(x+\frac{6}{2})^2\)vì \((x-\frac{6}{2})^2\ge0\forall x\)\(\Rightarrow x^2-6x+1=-8+(x+\frac{6}{2})^2\le-8\)            vậy GTNN  \(x^2-6x+1=-8\)đạt được khi \((x+\frac{6}{2})^2=\Rightarrow x=-\frac{6}{2}\)\(\Rightarrow A\ge-8\)vậy MAX\((A)=-8\)đạt đươc \(\Leftrightarrow x=-\frac{6}{2}\)