K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

Để A đạt giá trị lớn nhất thì 4x2 - 16x - 5 phải đạt giá trị nhỏ nhất

Ta có 4x2 - 16x - 5 = (2x - 4)2 - 21 > - 21

Vậy max A = \(\frac{1}{-21}\) \(\Leftrightarrow\) 2x - 4 = 0 \(\Leftrightarrow\) x = 2

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

Bạn tham khảo tại đây:

Câu hỏi của Đinh Diệp - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

Lời giải:

a)

Xét hiệu:

\(a+\frac{1}{4a}-1=(\sqrt{a})^2+(\frac{1}{2\sqrt{a}})^2-2.\sqrt{a}.\frac{1}{2\sqrt{a}}=(\sqrt{a}-\frac{1}{2\sqrt{a}})^2\geq 0, \forall a>0\)

\(\Rightarrow a+\frac{1}{4a}\geq 1\) (đpcm)

Dấu "=" xảy ra khi \(\sqrt{a}-\frac{1}{2\sqrt{a}}=0\) hay $a=\frac{1}{2}$

b)

Biểu thức \(\frac{16x^3-12x^2+1}{4x}+2018\) không có GTLN bạn nhé, chỉ có GTNN

8 tháng 8 2019

mình viết nhầm đề bạn ạ

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

25 tháng 11 2016

\(8x^2+y^2+\frac{1}{4x^2}=4\)

\(A=xy+\frac{1}{2}\)

25 tháng 11 2016

Sao không giải luôn đi Thùy Dương chép lại cái đề làm gì ??

14 tháng 12 2016

Q lớn nhất =>\(A=\sqrt{x^2-4x+5}Phai.NN\)

\(A=\sqrt{x^2-4x+2^2+1}=\sqrt{\left(x-2\right)^2+1}\ge1\)

\(Q=\frac{1}{A}\le1\) dẳng thức khi x=2

20 tháng 8 2016

Ta có : \(A=\frac{16x^2+4x+1}{2x}=8x+2+\frac{1}{2x}\)

Áp dụng bđt Cauchy : \(8x+\frac{1}{2x}\ge2\sqrt{8x.\frac{1}{2x}}=4\)

\(\Rightarrow A\ge6\)

Vậy MIN A = 6 \(\Leftrightarrow\begin{cases}x>0\\8x=\frac{1}{2x}\end{cases}\) \(\Leftrightarrow x=\frac{1}{4}\)

20 tháng 8 2016

Cách khác nhanh hơn:

Áp dụng BĐT AM-GM:

\(16x^2+4x+1\ge3\sqrt[3]{4^2.x^2.4x}=3.4x=12x\)

Suy ra \(A\ge\frac{12x}{2x}=6\).

Đẳng thức xảy ra khi \(16x^2=4x=1\Leftrightarrow x=\frac{1}{4}\)

________________

P/S: Cách này nhanh hơn avf không đòi hỏi phải tính toán nhiều :D