K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

x+y+z=xyz+1

Giả sử x lớn hơn =y lớn hơn =z

=> 3x> xyz+1 >xyz

=> 3> yz

do y,z nguyên dương nnee tìm đc y,z

24 tháng 3 2016

bạn khó hiểu chỗ nào

27 tháng 11 2018

Ghê thế àk!!!!!!

27 tháng 11 2018

2

4

6

Học tốt

14 tháng 4 2017

Nó bị lỗi đọc không ra. Không biết câu hỏi ghi gì?

14 tháng 4 2017

\(P=\dfrac{x^2+y^2}{x-y}=\dfrac{\left(x-y\right)^2+2xy}{x-y}=x-y+\dfrac{2}{x-y}\)

\(\ge2\sqrt{2}\)

Dấu = xảy ra khi: \(\left\{{}\begin{matrix}x-y=\dfrac{2}{x-y}\\xy=1\end{matrix}\right.\)

28 tháng 12 2018

làm như giỏi lắm í, thôi khỏi nói cũng biết, ko cần thể hiện đâu

29 tháng 12 2018

\(A=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}+\frac{c}{\sqrt{3+c^2}}\)

     \(=\frac{a+b+c}{\sqrt{3+a^2}+\sqrt{3+b^2}+\sqrt{3+c^2}}\)

Ta có: \(\sqrt{3+a^2}+\sqrt{3+b^2}+\sqrt{3+c^2}\)

\(=\sqrt{ab+bc+ac+a^2}+\sqrt{ab+bc+ac+b^2}+\sqrt{ab+bc+ca+c^2}\)

\(=\sqrt{b\left(a+c\right)+a\left(a+c\right)}+\sqrt{b\left(a+b\right)+c\left(a+b\right)}+\sqrt{b\left(a+c\right)+c\left(a+c\right)}\)

\(=\sqrt{\left(a+c\right)\left(a+b\right)}+\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\le\frac{a+c+a+b}{2}+\frac{a+b+b+c}{2}+\frac{a+c+b+c}{2}\)

\(\le\frac{2a+a+2b+b+2c+c}{2}=\frac{3a+3b+3c}{2}=\frac{3}{2}\left(a+b+c\right)\)

Suy ra : \(A=\frac{a+b+c}{\sqrt{3+a^2}+\sqrt{3+b^2}+\sqrt{3+c^2}}\ge\frac{2}{3}\)

Dấu "=" xảy ra khi và chỉ khi a=b=c=0

Vậy Amin = \(\frac{2}{3}\)

Chắc sai. Mong bạn giúp đỡ. Cảm ơn!

12 tháng 1 2018

thỏa mãn ji hả bạn mik ko hiểu

4 tháng 11 2019

ĐKXĐ :\(x\ge0\)

Mẫu :\(5x-3\sqrt{x}+8\)

\(=\left(\sqrt{5x}\right)^2-2.\frac{3\sqrt{5}}{10}.\sqrt{5x}+\left(\frac{3\sqrt{5}}{10}\right)^2+8-\left(\frac{3\sqrt{5}}{10}\right)^2\)

\(=\left(\sqrt{5x}-\frac{3\sqrt{5}}{10}\right)^2+\frac{151}{20}\)

\(=\sqrt{5}.\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{20}\ge\frac{151}{20}\)(do \(\left(\sqrt{x}-\frac{3}{10}\right)^2\ge0\) )

\(\Rightarrow5x-3\sqrt{x}+8\ge\frac{151}{20}\)

\(\Rightarrow\frac{1}{5x-3\sqrt{x}+8}\le\frac{20}{151}\)

Mặt khác \(A=\frac{1}{5x-3\sqrt{x}+8}\)

\(\Rightarrow A\le\frac{20}{151}\)

Dấu ''='' xảy ra khi và chỉ khi \(\sqrt{x}=\frac{3}{10}\) hay \(x=\frac{9}{100}\)

Vậy Max A = \(\frac{20}{151}\)\(\Leftrightarrow\)\(x=\frac{9}{100}\)

6 tháng 11 2019

\(A=\frac{1}{5x-3\sqrt{x}+8}\left(ĐKXĐ:x\ge0\right)\)Dễ dàng cm A>0

Đặt \(\sqrt{x}=t\)(\(t\ge0\))

Khi đó ta viết lại A dưới dạng \(A=\frac{1}{5t^2-3t+8}\)

\(\Leftrightarrow5t^2A-3t.A+8A-1=0\)

\(\Delta=9A^2-4.5A\left(8A-1\right)=9A^2-160A^2+20A=-151A^2+20A\ge0\)

\(\Leftrightarrow151A^2-20A\le0\)

\(\Leftrightarrow A\left(151A-20\right)\le0\)

\(\Leftrightarrow A\le\frac{20}{151}\)(Do A>0)

Vậy MAXA=20/151.Dấu "=" xảy ra khi

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\111A-20\ge0\end{cases}}\\\hept{\begin{cases}A\ge0\\111A-20\le0\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\A\ge\frac{20}{111}\end{cases}}\\\hept{\begin{cases}A\ge0\\A\le\frac{20}{111}\end{cases}}\end{cases}\Rightarrow}}A\le\frac{20}{111}\)

ĐK \(\hept{\begin{cases}x\ne0\\x+y\ne0\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x}=a\\x+y=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}8a^2+b=\frac{3}{2a}\\b^2+a=\frac{3}{2b}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}16a^3+2ab=3\\2b^3+2ab=3\end{cases}}\)

\(\Rightarrow16a^3=2b^3\Rightarrow8a^3=b^3\)

\(\Rightarrow2a=b\)

\(\Rightarrow\frac{2}{x}=x+y\Leftrightarrow x^2+xy-2=0\)

Rút y thay vào hệ là ra