Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(=-\left(x^2+2x-100\right)\)
\(=-\left(x^2+2x+1-101\right)\)
\(=-\left(x+1\right)^2+101< =101\)
Dấu = xảy ra khi x=-1
b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)
Dấu = xảy ra khi x=1/6
c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)
\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)
\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)
Dấu = xảy ra khi x=3 và y=-1
\(A=-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\le-1\)
Vậy GTLN của A là -1 khi x = 3
\(B=-2x^2-4x-10=-2\left(x^2+2x+1\right)-8=-2\left(x+1\right)^2-8\le-8\)
Vậy GTLN của B là -8 khi x = -1
\(C=-2x^2+3x-10=-2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-\frac{71}{8}=-2\left(x-\frac{3}{4}\right)^2-\frac{71}{8}\le-\frac{71}{8}\)
Vậy GTLN của C là \(-\frac{71}{8}\)khi x = \(\frac{3}{4}\)
\(D=-x^2-y^2+2x-4y-10\)
\(D=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)-5\)
\(D=-\left(x-1\right)^2-\left(y+2\right)^2-5\le-5\)
Vậy GTLN của D là -5 khi x = 1; y = -2
\(a,A=-x^2+6x-10\)
\(=-x^2+6x-9-1\)
\(=-\left(x^2-6x+9\right)-1\)
\(=-\left(x-3\right)^2-1\)
Ta có: \(-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2-1\le-1\forall x\)
=> Max A =-1 tại \(-\left(x-3\right)^2=0\Rightarrow x=3\)
cn lại lm tg tự
=.= hok tốt!!
bài này dài lăm mk làm giúp 1 câu
A = (x -y)2 + (x+1)2 + (y-1)2 + 1
vậy GTNN = 1
(bn phân h 2x2 = x2 + x2
2y2 = y2+ y2 và 3 =1+1+1
là hiểu cách mk làm , còn nếu k hiểu ra đưa thầy giáo ,thầy sẽ gọi mk là thiên tài)
bạn đó giải rồi nhung nếu cần mình giải kỹ thì nhắn tin mình nha
a) A= -x2 + 6x -10
= -(x2 - 6x) -10
= -(x2 - 2. x .3 +32 -9)- 10
= -( x-3 )2 +9 -10
= - (x-3)2 -1 \(\le\)-1 với mọi giá trị của x
Dấu '' = '' xảy ra khi và chỉ khi
x-3 =0
\(\Leftrightarrow\)x=3
Vậy giá trị lớn nhất của biểu thức A là -1 tại x =3
CÁC PHẦN KHÁC CẬU LÀM TƯƠNG TỰ
b) B= -2x2-4x-10
= -2(x2+ 2x ) -10
= -2 (x2 +2x+12 -1)-10
=-2(x+1)2 +2 -10
=-2(x+1)2 -8 \(\le\)-8 với mọi giá trị của x
Dấu " ='' xảy ra khi và chỉ khi
x+1=0
............................
c) C= -2x2 +3x -10
= -2(x2 -\(\frac{3}{2}\)x) -10
= -2( x2 - 2.x.\(\frac{3}{4}\)+ \(\frac{3^2}{4^2}\)-\(\frac{9}{16}\))-10
= -2(x-\(\frac{3}{4}\))2 +\(\frac{9}{8}\)-10
=-2(x- \(\frac{3}{4}\))2 +\(\frac{-71}{8}\)\(\le\)\(\frac{-71}{8}\)với mọi giá trị của x
Dấu bằng ''='' xảy ra khi và chi khi
x-\(\frac{3}{4}\)=0
.......................................................
d) D= -x2 -y2+2x-4y -10
=(-x2+2x) +( -y2 -4y) -10
= -(x2 -2x+1 -1) -(y2 +4y+22-4 )-10
=-(x-1)2 +1 -(y+2)2 +4 -10
=-(x-1)2 - (y+2)2 -5 \(\le\)5 với mọi giá tri của x
Dấu '' ='' xảy ra khi và chỉ khi
\(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\)
......................................................
e) XIN LỖI TỚ CHƯA NGHĨ RA
b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)
\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)
\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)
\(-2x^2-2xy-y^2+2x-2y-2=-\left[y^2+2y\left(x+1\right)+\left(x+1\right)^2\right]-\left(x^2-4x+4\right)+3=-\left(y+x+1\right)^2-\left(x-2\right)^2+3\le3\)
\(max=3\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)