Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét x2 + y2 - x + 6y + 10
= ( x2 - 2 . x .1/2 + 1/4) + ( y2 + 2 .y .3 + 9) + 3/4
= (x + 1/2)2 + (y + 3)2 + 3/4
Vì (x + 1/2) 2 > 0 vói mọi x
( y + 3)2 > vưới mọi x
3/4 > 0
=> (x + 1/2)2 + (y+3)2 + 3/4
=> M có GTNN là 3/4 <=> (x+1/2)2 = 0 -> x + 1/2=0 -> x = -1/2
và (y + 3)2 = 0 -> y +3 = 0 -> y =-3
Vậy M có GTNN là 3/4 khi x = -1/2 và y =-3
đấy là 1 cahs tách cậu có thể tìm và tham khảo các cách khác : '> đừng thụ động quá nhé
Ta có: x+2y=1
=> x=1-2y
Thay x=1-2y vào biểu thức A
Ta có: A=(1-2y)2+2y2
A=(2x-1)2 >= 0, dấu = xảy ra <=> x=1/2
Vậy min A = 0 <=> x=1/2 và y=1/4
\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)
\(Mmin=1\) khi x+2 = 0 => x = -2
M=x2 +4x +5
=>M=x(x+4)+5
Ta có:
x(x+4) lớn hơn hoặc bằng 0
=>x(x+4)+5 lớn hơn hoặc bằng 5
=>M lớn hơn hoặc bằng 5
Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4
Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4
Ta có: \(B=x^2-4xy+5y^2-22y+28\)
\(=x^2-4xy+y^2-22y+121-93\)
\(=\left(x-2y\right)^2+\left(y-11\right)^2-93\)
Vì \(\left(x-2y\right)^2\ge0;\left(y-11\right)^2\ge0\)
\(\Rightarrow B\ge-93\)
Dấu "=" xảy ra khi \(y-11=0\Rightarrow y=11\)
\(x-2y=0\Rightarrow x-2.11=0\Rightarrow x=22\)
Vậy Bmin=-93 khi x=22; y=11
\(2x^2+10x-1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)
\(=2\left(\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right)\)
\(=\frac{-27}{2}-2\left(x+\frac{5}{2}\right)^2\le\frac{-27}{2}\)
\(MinB=\frac{-27}{2}\Leftrightarrow x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)
1.ta có: 7x-2x^2=-2(x^2-7/2x)
=-2(x^2-2*7/4x+49/16-49/16)
=-2(x-7/4)^2+49/8 <=49/8
Dấu bằng xáy ra <=> x=7/4
Vậy max=49/8 <=> x=7/4
1: \(=x^2+x+5=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>=\dfrac{19}{4}\)
Dấu '=' xảy ra khi x=-1/2
2: \(=-\left(x^2+4x-9\right)\)
\(=-\left(x^2+4x+4-13\right)\)
\(=-\left(x+2\right)^2+13\le13\)
Dấu '=' xảy ra khi x=-2
3: \(=x^2-4x+4+y^2+2y+1+2\)
\(=\left(x-2\right)^2+\left(y+1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2 và y=-1
x+y-x+6y+10= x2-x+\(\frac{1}{4}\)+y2+6y+9+\(\frac{3}{4}\)=(x-\(\frac{1}{2}\))2+(y+3)2+\(\frac{3}{4}\) ≥\(\frac{3}{4}\)
Daauus bằng xảy ra khi và chỉ khi x=\(\frac{1}{2}\) và y= -3
Suy ra Min= \(\frac{3}{4}\)