Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x-m+1\ge0\\-x+2m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\)
\(\Rightarrow x\in[m-1;2m)\)
Để hàm xác định trên (3;4)
\(\Rightarrow\left(3;4\right)\subset[m-1;2m)\)
\(\Rightarrow\left\{{}\begin{matrix}m-1\le3\\2m\ge4\end{matrix}\right.\) \(\Rightarrow2\le m\le4\)
Tìm tất cả giá trị thực m để hàm số \(y=\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\) xác định khoảng (1;3)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\) \(\Leftrightarrow m-1\le x< 2m\)
Để miền xác định của hàm khác rỗng \(\Rightarrow2m>m-1\Rightarrow m>-1\)
Khi đó để hàm xác định trên \(\left(1;3\right)\)
\(\Leftrightarrow\left(1;3\right)\subset[m-1;2m)\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-1\le1\\2m\ge3\end{matrix}\right.\) \(\Rightarrow\frac{3}{2}\le m\le2\)
\(\left\{{}\begin{matrix}m\le x\\x\le3\end{matrix}\right.\Rightarrow m\le3\Rightarrow\left[m;3\right]\)
Vay \(m\le3\) thi ham so co tap xd la 1 doan tren truc so
P/s: Ve cai truc so ra la hieu
ĐKXĐ: \(\left\{{}\begin{matrix}x-m+1\ge0\\-x+2m>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-1\le x< 2m\\2m>m-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-1\le x< 2m\\m>-1\end{matrix}\right.\)
Để hàm số xác định trên \(\left(-1;3\right)\) thì:
\(\left\{{}\begin{matrix}m-1\le-1\\2m>3\\m>-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le0\\m>\frac{3}{2}\\m>-1\end{matrix}\right.\) \(\Rightarrow m=\varnothing\)
Vậy ko tồn tại m thỏa mãn