K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

 

9 tháng 8 2016

\(A=x-x^2=-\left(x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

\(-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\le\frac{1}{4}\)

Vậy Max A = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)

***

\(B=5-8x-x^2=-\left(x^2+2\times x\times4+4^2-4^2-5\right)=-\left[\left(x+4\right)^2-21\right]\)

\(\left(x+4\right)^2\ge0\)

\(\left(x+4\right)^2-21\ge-21\)

\(-\left[\left(x+4\right)^2-21\right]\le21\)

Vậy Max B = 21 khi x = - 4 

***

\(C=5-x^2+2x-4y^2-4y=-\left(x^2-2\times x\times1+1^2-1^2+\left(2y\right)^2-2\times2y\times1+1^2-1^2-5\right)=-\left[\left(x-1\right)^2+\left(2y-1\right)^2-7\right]\)

\(\left(x-1\right)^2\ge0\)

\(\left(2y-1\right)^2\ge0\)

\(\left(x-1\right)^2+\left(2y-1\right)^2-7\ge-7\)

\(-\left[\left(x-1\right)^2+\left(2y-1\right)^2-7\right]\le7\)

Vậy Max C = 7 khi x = 1 và y = \(\frac{1}{2}\)

15 tháng 6 2018

Tìm GTNN

a/ \(A=4x^2+7x+13=\left(4x^2+7x+\frac{49}{16}\right)+\frac{159}{16}=\left(2x+\frac{7}{4}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)

b/ \(B=5-8x+x^2=\left(x^2-8x+16\right)-11=\left(x-4\right)^2-11\ge-11\)

c/ \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

15 tháng 6 2018

@alibaba nguyễn giúp mình với

16 tháng 7 2023

\(C=16x^2-8x+2024\)

\(\Rightarrow C=16x^2-8x+1+2023\)

\(\Rightarrow C=\left(4x-1\right)^2+2023\ge2023\left(\left(4x-1\right)^2\ge0\right)\)

\(\Rightarrow Min\left(C\right)=2023\)

\(D=-25x^2+50x-2023\)

\(\Rightarrow D=-\left(25x^2-50x+25\right)-1998\)

\(\Rightarrow D=-\left(5x-5\right)^2-1998\le1998\left(-\left(5x-5\right)^2\le0\right)\)

\(\Rightarrow Max\left(D\right)=1998\)

\(B=-x^2+20x+100=-\left(x^2-20x+100\right)+200=-\left(x-10\right)^2+200\le200\left(-\left(x-10\right)^2\le0\right)\)

\(\Rightarrow Max\left(B\right)=200\)

\(E=\left(2x-1\right)^2-\left(3x+2\right)\left(x-5\right)\)

\(\Rightarrow E=4x^2-4x+1-\left(3x^2-13x-10\right)\)

\(\Rightarrow E=4x^2-4x+1-3x^2+13x+10\)

\(\Rightarrow E=x^2+9x+11=x^2+9x+\dfrac{81}{4}-\dfrac{81}{4}+11\)

\(\Rightarrow E=\left(x+\dfrac{9}{2}\right)^2-\dfrac{37}{4}\ge-\dfrac{37}{4}\left(\left(x+\dfrac{9}{2}\right)^2\ge0\right)\)

\(\Rightarrow Min\left(E\right)=-\dfrac{37}{4}\)

\(F=\left(3x-5\right)^2-\left(3x+2\right)\left(4x-1\right)\)

\(\Rightarrow F=9x^2-30x+25-\left(12x^2+3x-2\right)\)

\(\Rightarrow F=-3x^2-33x+27=-3\left(x^2-10x+9\right)\)

\(\Rightarrow F=-3\left(x^2-10x+25\right)+48=-3\left(x-5\right)^2+48\le48\left(-3\left(x-5\right)^2\le0\right)\)

\(\Rightarrow Max\left(F\right)=48\)

22 tháng 5 2017

Bài 5:

a/A = x2 - 6x + 10 = x2 - 6x + 9 + 1 = ( x - 3 )2 +1

Vì ( x - 3 )2  \(\ge\)0  nên ( x - 3 )2 + 1 \(\ge\)1

Giá trị nhỏ nhất của A là 1

b/ B = x ( x + 6 ) = x2 + 6x + 9 - 9 = ( x + 3 )2 - 9 

Vì ( x + 3 )\(\ge\)0  nên ( x + 3 ) - 9\(\ge\)- 9

Giá trị nhỏ nhất của B là - 9

22 tháng 5 2017

5  -  A\(=x^2-6x+10\)

     A\(=x^2-3x-3x+9+1\)

    A\(=x\left(x-3\right)-3\left(x-3\right)+1\)

    A\(=\left(x-3\right)\left(x-3\right)+1\)

    A\(=\left(x-3\right)^2+1\)

Vì \(^{\left(x-3\right)^2\ge0\forall x}\)

\(\rightarrow\left(x-3\right)^2+1\ge1\forall x\)

Hay A\(\ge1\forall x\)

Dấu '' = '' xảy ra\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

B\(=x\left(x+6\right)\)

B\(=x^2+6x\)

B\(=x\left(x+3\right)+3\left(x+3\right)-9\)

B\(=\left(x+3\right)\left(x+3\right)-9\)

B\(=\left(x+3\right)^2-9\)

\(\left(x+3\right)^2\ge0\forall x\)

\(\rightarrow\left(x+3\right)^2-9\ge-9\forall x\)

Hay B\(\ge-9\forall x\)

Dấu ''='' xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

23 tháng 8 2020

\(A=5-8x+x^2=-8x+x^2+6-11\)

\(=\left(x-4\right)^2-11\)

Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy Amin = - 11 <=> x = 4

23 tháng 8 2020

\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)

\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy Bmax = 9 <=> x = - 1

25 tháng 7 2016

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+10+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+19670+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)20+21=21

Dấu = khi x+4=0 <=>x=-4

10 tháng 10 2017

Bài 1:

c)C=x2+5x+8

=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)

=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)

Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)